

MOBLEY GAS PLANT

45CSR13 NSR PERMIT MODIFICATION APPLICATION

Markey

103-0004

103-0004

13-2878E

Derry
Ckcopy has been Remared

SUBMITTED TO WVDEP DIVISION OF AIR QUALITY February 2017

MarkWest Energy Appalachia, L.L.C. 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137 (800) 730-8388 (303) 290-8700 (303) 825-0920 Fax

February 27, 2017

Mr. Fred Durham, Director West Virginia Department of Environmental Protection Division of Air Quality Charleston, WV 25304

Re: MarkWest Liberty Midstream & Resources L.L.C. Mobley Gas Plant Application for Modification Permit (R13-2878D)

Dear Mr. Benedict:

MarkWest Liberty Midstream & Resources L.L.C. (MarkWest) is submitting the enclosed Modification application in accordance with the West Virginia Air Pollution Control Act and Title 45 Series 13 (45CSR13) for the Mobley Gas Plant in Wetzel County.

This package contains the required application forms, emission calculations and supporting documentation for the referenced project. A check in the amount of \$2,000 for the Modification Permit fee is included with this application. The public notice for the proposed construction will be published in *The Wetzel Chronicle*. MarkWest will forward the Affidavit of Publication to your attention once it is received from the publisher.

If you have any questions or comments, please call me (303) 542-1212 or e-mail wade.janecek@markwest.com at your earliest convenience.

Sincerely,

Wade Janecek, P.⊑.

Senior Environmental Engineer

Enclosures (Original + Three Copies)

TABLE OF CONTENTS

TABLE OF CONTENTSi
INTRODUCTION ii
Project Descriptionii
Proposed Emissionsiii
WVDEP APPLICATION FOR NSR PERMIT
APPLICATION CHECKLIST
ATTACHMENT C: INSTALLATION/START-UP SCHEDULE
ATTACHMENT D: REGULATORY DISCUSSION
ATTACHMENT G: PROCESS DESCRIPTION
ATTACHMENT I: EMISSION UNITS TABLE
ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET
ATTACHMENT K: FUGITIVE EMISSIONS POINTS DATA SUMMARY SHEETK
ATTACHMENT L: EMISSION UNIT DATA SHEETSL
ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS
ATTACHMENT P: PUBLIC NOTICER
APPLICATION FEE S
APPENDIX A; SUPPORT DOCUMENTS

INTRODUCTION

MarkWest Liberty Midstream & Resources L.L.C. (MarkWest) requests authorization for a Modification Permit for the Mobley Gas Plant (Permit R13-2878D), in accordance with the West Virginia Air Pollution Control Act and Title 45 Series 13 (45CSR13).

Project Description

The Mobley Gas Plant is currently used for processing natural gas and is capable of doing so at a rate of 965 mmscf/d. With this submittal MarkWest is seeking to update several representations to match their as-built condition, remove an engine from the facility, update fugitive component counts based on LDAR monitoring, and make several updates based on audit findings. A summary of the proposed changes is included below.

- Add two emergency generators;
- Update the MDHI of H-5782 to reflect it's as-built rating of 50.78 MMBtu/hr;
- Remove engine CM-1002;
- Add several methanol and closed drain tanks;
- Update plant blowdown emissions based on observed actual volumes;
- Add emissions associated with rod packing and crankcase venting to the permit;
- Update fugitive component counts based on LDAR monitoring;
- Update permit condition 6.1.3.d to reference a net heating value of 300 btu/scf or greater in accordance with 40 CFR 60.18(c)(3)(ii);
- Update permit condition 6.2.4 to reference condition 6.1.3.c rather than 6.1.4.c;
- Update permit condition 6.3.1 to reference condition 6.1.3.b rather than 6.1.4.b
- Remove permit conditions 4.1.4.a and 4.1.4.b as they do not apply to units equipped with oxidation catalysts;
- Update permit condition 3.2.1 to reference the fuel gas analysis exemption outlined in
 40 CSR 10-10.3 which states "The owner or operator of a fuel burning unit(s) which

combust natural gas, wood, or distillate oil, alone or in combination, shall be exempt from the requirements of section 8.";

- Remove the references from permit condition 3.2.2 for 5.1.2.c and 5.1.3.h.vi as those conditions do not exist.
- Change description of emergency flare to process flare.

Proposed Emissions

Emission calculations for the project are presented in Attachment N. Attachment N includes a summary of the new potential to emit and emission calculations for the modified and added sources.

APPLICATION CHECKLIST

p i sul	omplete application is demonstrated when all of the information required below is roperly prepared, completed and attached. The items listed below are required information which must be submitted with a 45CSR13 permit application. Any omittal will be considered incomplete if the required information is not included. The applicant must submit a complete application in order to receive a 45CSR13 permit.
V	Class I legal advertisement published in a newspaper certified to accept legal advertisements and original affidavit submitted for Class II administrative updates, temporary and relocation permits, and general permit registrations.
	\$1,000 application fee for construction, modification, relocation or temporary permit; \$300 application fee for Class II administrative update. Additional applicable fees:
V	 \$1,000 NSPS \$5,000 Major Modification \$2,500 NESHAP \$10,000 Major Construction \$2,500 45CSR27 Pollutant
V	Original and three (3) copies of the application.
V	File organization – application pages are numbered and in correct order, application is bound in some way, etc.
V	Confidential Business Information is properly identified.
V	General application forms signed by a responsible official.
	Authority form – required if application is signed by someone other than a responsible official – one of the following:
	 Authority of Corporation if application is not signed by the President or CEO; Authority of Partnership if application is not signed by a general partner or proprietor; Authority of Limited Partnership if application is not signed by general partner or proprietor; or Authority of Governmental Agency if application is not signed by

	principal elected officer or ranking elected official.
V	Copy of current Business Registration Certificate.
V	Process description, including equipment and emission point identification numbers.
V	Process flow diagram, including equipment and emission point identification numbers.
V	Plot plan, including equipment and emission point identification numbers.
V	Area map with directions and location marked.
	Applicable technical forms completed and submitted:
V	 Emission Point Data Summary Sheets Emission Unit Data sheets Air Pollution Control Device Sheets Equipment List Form
V	Emission calculations – emission factors, references, source identification numbers, etc.

WVDEP APPLICATION FOR NSR PERMIT

C

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street, SE Charleston, WV 25304 (304) 926-0475

APPLICATION FOR NSR PERMIT

AND

TITLE V PERMIT REVISION (OPTIONAL)

www.dep.wv.gov/dag	(OPTIONAL)					
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KI ☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION ☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY ☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-F	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION					
INFORMATION AS ATTACHMENT S TO THIS APPLICATION FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options						
(Appendix A, "Title V Permit Revision Flowchart") and		•	changes reque	sted in this Permit A	Application.	
Sec	ction I	l. General				
Name of applicant (as registered with the WV Secreta MarkWest Liberty Midstream & Resources,	-		2. Federal E	Employer ID No. (Fi		
3. Name of facility (if different from above):			4. The applic	ant is the:		
Mobley Gas Plant				□OPERATOR	⊠ BOTH	
5A. Applicant's mailing address: 1515 Arapahoe Street, Tower 1, Suite 1600 Denver, CO 80202-2137	5	5B. Facility's prese	nt physical ac	ddress:		
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorporations change amendments or other Business Registration of the NO, provide a copy of the Certificate of Authority/amendments or other Business Certificate as Attach. 	ation/O Certifica /Authori	rganization/Limit ate as Attachment ity of L.L.C./Regis	ed Partnersh	i p (one page) inclu		
7. If applicant is a subsidiary corporation, please provide	the nam	ne of parent corpor	ation:			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site?</i> ☑ YES ☐ NO If YES, please explain: Applicant owns the property. If NO, you are not eligible for a permit for this source. 						
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural gas processing plant 10. North American Indu Classification System (NAICS) code for the						
11A. DAQ Plant ID No. (for existing facilities only): 1 0 3 - 0 0 0 4 2			SR30 (Title V) pern existing facilities onl			

All of the required forms and additional information can be	e found under the Permitting Section of Di	AQ's website, or requested by phone.					
12A.							
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 	mporary permits at an existing facility, e road;	please provide directions to the					
 For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. 							
From W Virginia 20S, turn onto CO Rd 7/8 (2.8 mi) right onto CO Rd 7/4/Sheep Run (0.8 mi). Turn left	, continue onto CO Rd 80 (0.8 mi), turn onto CO Rd 7/7, arrive at destination.	left onto CO Rd 7/4 (0.4 mi), turn					
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:					
14624 North Fork Rd	Smithfield	Wetzel					
12.E. UTM Northing (KM): 4378315.20	12F. UTM Easting (KM):538098.82	12G. UTM Zone: 17S					
13. Briefly describe the proposed change(s) at the facilit Updates to existing permit including corrections to heater counts, addition of rod packing and crankcase emissions administrative updates.	r size and naming, addition of generators	s, correcting fugitive component CM-1002, and various					
Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provious change did happen: / /	·	14B. Date of anticipated Start-Up if a permit is granted: November/December 2013					
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one unit		units proposed in this permit					
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week 7	activity/activities outlined in this applica Weeks Per Year 52	tion:					
16. Is demolition or physical renovation at an existing fac	cility involved?						
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will become	e subject due to proposed					
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Plar	(RMP) to U. S. EPA Region III.					
18. Regulatory Discussion. List all Federal and State a	ir pollution control regulations that you b	pelieve are applicable to the					
proposed process (if known). A list of possible applica	ble requirements is also included in Atta	chment S of this application					
(Title V Permit Revision Information). Discuss applical	oility and proposed demonstration(s) of o	compliance (if known). Provide this					
information as Attachment D.							
Section II. Additional atta	achments and supporting do	ocuments.					
 Include a check payable to WVDEP – Division of Air (45CSR13). 	Quality with the appropriate application	fee (per 45CSR22 and					
20. Include a Table of Contents as the first page of you	r application package.						
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance).							
 Indicate the location of the nearest occupied structure 	(e.g. church, school, business, residence	ce).					
22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F .							

23. Provide a Process Description as Attachment G.								
 Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. 								
24. Provide Material Safety Data Sheet	s (MSDS) for all materials process	sed, used or produced as Attachment H.						
For chemical processes, provide a MS	DS for each compound emitted to	the air.						
25. Fill out the Emission Units Table an								
26. Fill out the Emission Points Data St	ımmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.						
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	as Attachment K.						
28. Check all applicable Emissions Unit	Data Sheets listed below:							
☐ Bulk Liquid Transfer Operations	☐ Haul Road Emissions	Quarry						
☐ Chemical Processes	☐ Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage						
☐ Concrete Batch Plant	☐ Incinerator	Facilities						
☐ Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks						
☐ General Emission Unit, specify Proce	ss heaters							
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment L.							
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed below	r						
Absorption Systems	☐ Baghouse	☐ Flare						
☐ Adsorption Systems	☐ Condenser	☐ Mechanical Collector						
☐ Afterburner	☐ Electrostatic Precipitato	wet Collecting System						
Other Collectors, specify								
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attachm	ent M.						
30. Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N, or	attach the calculations directly to the forms listed in						
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.								
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.								
32. Public Notice. At the time that the a	pplication is submitted, place a CI	ass I Legal Advertisement in a newspaper of general						
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal								
Advertisement for details). Please s	ubmit the Affidavit of Publication	as Attachment P immediately upon receipt.						
33. Business Confidentiality Claims. D	oes this application include confid	ential information (per 45CSR31)?						
☐ YES	⊠ NO							
	ig the criteria under 45CSR§31-4.	itted as confidential and provide justification for each 1, and in accordance with the DAQ's "Precautionary structions as Attachment Q.						

Section III. Certification of Information

the state of the s							
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:							
☐ Authority of Corporation or Other Business	☐ Authority of Pa	artnership					
☐ Authority of Governmental Agency		☐ Authority of Lir	mited Partnership				
Submit completed and signed Authority Forn	n as Attachment R.						
All of the required forms and additional informa	ation can be found under t	he Permitting Section	on of DAQ's website, or requested by phone.				
35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec			cial (per 45CSR§13-2.22 and 45CSR§30-				
Certification of Truth, Accuracy, and Comp	oleteness						
application and any supporting documents appreasonable inquiry I further agree to assume restationary source described herein in accordationary source described herein in accordation Environmental Protection, Division of Air Qualand regulations of the West Virginia Division of	I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be						
Compliance Certification Except for requirements identified in the Title V that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE (Please	fter reasonable inquiry, a	all air contaminant s	chieved, I, the undersigned hereby certify sources identified in this application are in OATE: 2-27-17				
'(Please	use blue ink)	i	· · · · · · · · · · · · · · · · · · ·				
35B. Printed name of signee: Leanne Meye	er		35C. Title: VP of EH&S				
35D. E-mail: lmeyer@markwest.com	36E. Phone: 303-925	5-9299	36F. FAX: 303-825-0920				
36A. Printed name of contact person (if differe	nt from above): Nathar	n Wheldon	36B. Title: Environmental Manager				
36C. E-mail: nwheldon@markwest.com	36D. Phone: 303-542	2-0686	36E. FAX: 303-825-0920				
PLEASE CHECK ALL APPLICABLE ATTACHMEN	ITS INCLUDED WITH THIS	PERMIT APPLICATI	ON:				
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment M: Air Pollution Control Device Sheet(s) Attachment D: Regulatory Discussion Attachment N: Supporting Emissions Calculations Attachment E: Plot Plan Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet Attachment S: Title V Permit Revision Information Application Fee 							
address listed on the first page of this application. Please DO NOT fax permit applications.							

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:
☐ Forward 1 copy of the application to the Title V Permitting Group and:
☐ For Title V Administrative Amendments:
☐ NSR permit writer should notify Title V permit writer of draft permit,
☐ For Title V Minor Modifications:
☐ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
☐ NSR permit writer should notify Title V permit writer of draft permit.
☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:
☐ NSR permit writer should notify a Title V permit writer of draft permit,
☐ Public notice should reference both 45CSR13 and Title V permits,
☐ EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT C: INSTALLATION/START-UP SCHEDULE

There is no additional construction or start-up of equipment associated with this modification.

ATTACHMENT D: REGULATORY DISCUSSION

There are no updates to the regulatory requirements associated with the facility with this modification.

ATTACHMENT G: PROCESS DESCRIPTION

Mobley Gas Plants I - V are natural gas processing plants for gas wells throughout West Virginia. The natural gas enters one or more molecular sieve(s), designed to remove liquids from the gas stream through contact. Heaters are employed to regenerate the molecular sieve(s) on a regular basis. After passing through the molecular sieve(s) the gas is cooled through a cryogenic plant with mechanical refrigeration, which serves to remove propane and heavier hydrocarbons known as natural gas liquids (NGLs) in the gas stream. Dependent upon several market conditions and contractual obligations a portion or all of the recovered liquids pass through a deethanization tower, which removes ethane as a purity product from the liquid stream by adding heat and driving the ethane into a gaseous phase. The ethane is transferred off-site via pipeline to market. The remaining NGLs are transported via pipeline to another facility; therefore, there are no on-site liquids storage tanks or loading facilities. The remaining residue gas stream is ready for compression prior to entering the downstream pipeline for transmission/distribution. A flare may be used to burn vapors released from emergency and/or upset conditions at the facility.

ATTACHMENT I: EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device 4
CM-1001	CM-1001	Waukesha P9390 GSI Engine	2012	2012 1,980-hp		NSCR
CM-1003	CM-1003	Waukesha P9390 GSI Engine	2012	1,980-hp	Existing	NSCR
CM-1004	CM-1004	Waukesha P9390 GSI Engine	2012	1,980-hp	Existing	NSCR
CM-1005	CM-1005	Waukesha P9390 GSI Engine	2012	1,980-hp	Existing	NSCR
CM-1006	CM-1006	Waukesha P9390 GSI Engine	2012	1,980-hp	Existing	NSCR
C-102	C-102	Caterpillar G3616 LE Engine	2012	4,735-hp	Existing	Oxid. Cat.
C-103	C-103	Caterpillar G3616 LE Engine	2012	4,735-hp	Existing	Oxid. Cat.
G-1	G-1	Generac MMG45 Generator	2012	53 hp	New	None
G-2	G-2	Kohler 40ERES Generator	2012	75 hp	New	None
H-741	H-741	Regeneration Gas Heater	2012	6.84 mmBtu/hr	Existing	None
H-781	H-781	Heat Medium Oil Heater	2012	18.05 mmBtu/hr	Existing	None
H-1741	H-1741	Regeneration Gas Heater	2012	8.12 mmBtu/hr	Existing	None
H-1781	H-1781	Heat Medium Oil Heater	2012	26.0 mmBtu/hr	Existing	None
FL-991	FL-991	Process Flare	2012	68,600 scf/min	Existing	None
H-3741	H-3741	Regeneration Gas Heater	2013	7.69 mmBtu/hr	Existing	None
H-4741	H-4741	Regeneration Gas Heater	2014	7.69 mmBtu/hr	Existing	None
H-3781	H-3781	Heat Medium Oil Heater	2013	16.07 mmBtu/hr	Existing	None
H-5741	H-5741	Regeneration Gas Heater	2015	7.69 mmBtu/hr	Existing	None
H-5781	H-5781	Heat Medium Oil Heater	2015	50.78 mmbtuh/hr	Modification	None

TK-087	TK-087	520 gal Methanol Tank	2012	520 gal	New	None
TK-2609	TK-2609	520 gal Methanol Tank	2012	520 gal	New	None
TK-3410	TK-3410	520 gal Methanol Tank	2012	520 gal	New	None
TK-3829	TK-3829	520 gal Methanol Tank	2012	520 gal	New	None
TK-4220	TK-4220	520 gal Methanol Tank	2012	520 gal	New	None
TK-4410	TK-4410	520 gal Methanol Tank	2012	520 gal	New	None
TK-1824	TK-1824	4,265 gal Closed Drain Tank	2012	4,265 gal	New	None
TK-4824	TK-4824	4,533 gal Closed Drain Tank	2012	4,533 gal	New	None
FUG-004	FUG-004	Fugitive Equipment Leaks	Proposed	N/A	Modification	None
1B	1B	Compressor Blowdowns	2012	N/A	Modification	None
2B	2B	Facility Blowdowns	2012	N/A	Modification	None
RP	RP	Rod Packing Emissions	2012	N/A	Modification	None
CBB	CBB	Crankcase Blowby Emissions	2012	N/A	Modification	None

¹For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

²For <u>Emission Points</u> use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal

⁴For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

Attachment J

EMISSION POINTS DATA SUMMARY SHEET

	Emission Concentration (ppmv or mg/m ⁴)		l						ł			ł	!			
	Est. Method Used		AP-42				EPA 453/	R-95-017			A P_47	71-10		:		
	Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/Vapor)			Gas/Vapor					odi /si	Gs Va	Gas/Vapor					
	Maximum Potential Controlled Emissions ⁵	ton/yr	14.46	8.90	2.67	1.78	0.41	0.13	69.69	1.15	0.10	0.11	0.10	0.00	0.00	0.03
}	Max Pot Con Emis	lb/hr	3.30	2.03	0.61	0.41	0.09	0.03	15.91	0.26	0.41	0.43	0.41	0.00	0.00	0.11
	Maximum Potential Uncontrolled Emissions ⁴	ton/yr	14.46	8.90	2.67	1.78	0.41	0.13	24.57	0.40	0.10	0.11	0.10	0.00	0.00	0.03
ata	Maxi Pote Uncor Emiss	lb/hr	3.30	2.03	0.61	0.41	0.09	0.03	5.61	0.09	0.41	0.43	0.41	0.00	00.00	0.11
Table 1: Emissions Data	All Regulated Pollutants - Chemical Name/CAS³ (Speciate VOCs	& HAPS)	NOX	00	VOC	PM ₁₀	HAP	SO_2	NOC	HAP	NOX	8	VOC	PM ₁₀	HAP	SO ₂
able 1:	Vent Time for Emission Unit (chemical processes only)	Max (hr/yr)	N/A						N/A		N/A					
Ĭ	Vent Time for Emission Unit (chemical processes only)	Short Term ²	N/A						N/A		N/A					
	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)	Device Type	None						None		None					
	Air Po Contro (Musi Emissi Table	ID No.	N/A						N/A		N/A					
	ssion Unit fented h This Point atch Emission Table & Plot Plan)	Source	H-5781						None		G-1					
	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)	ID No.	H-5781						N/A		G-1	•				
	Emission Point Type ¹		Upward	Vertical Stack	4000				FUG-004		Upward	Vertical				
	Emission Point ID No. (Must match Emission Units Table & Plot Plan)		H-5781						FUG-004		G-1					

I	1	1	ı.	ı
				# H
AP-42	Eng. Estimate	Eng. Estimate	40 CFR Part 98	Manufact urer Informati on
Gas/Vapor	roqsV\zsa	Gas/Vapor	Gas/Vapor	Gas/Vapor
0.00 0.00 0.00 0.00	0.02	7.82	0.40	1.95 1.13 1.03 0.29 0.37 0.01
0.33 0.50 0.17 0.01 0.00	66.50	0.02	0.00	0.44 0.26 0.24 0.07 0.08
0.08 0.12 0.04 0.00 0.00	0.02	390.9	0.01	1.95 1.13 1.03 0.29 0.37
0.33 0.50 0.17 0.01 0.00	66.50	89.23	0.00	0.44 0.26 0.24 0.07 0.08
NOX CO VOC PM ₁₀ HAP SO ₂	VOC	VOC	VOC	NOX CO VOC PM ₁₀ HAP SO ₂
N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A
None	None	Flare	None	None
N/A	N/A	FL- 991	N/A	N/A
G-2	11B	2B	None	None
G-2	118	2B	N/A	N/A
Upward Vertical Stack	Upward Vertical Stack	Upward Vertical Stack	RP	CBB
G-2	1B	2B	RP	CBB

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

| Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

page_2_ of_3_

WVDEP-DAQ Revision 2/11

4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

O = other (specify). Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate;

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

EMISSION POINTS DATA SUMMARY SHEET Attachment J

			Table 2: Release Parameter Data	ase Paramet	er Data			
Emission Point ID	Inner		Exit Gas		Emission Point Elevation (ft)	evation (ft)	UTM Coordinates (km)	es (km)
Mo. (Must match Emission Units Table)	(ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
H-5781	~3.0	730	32,237	76	1235	20	4378315.20	538098.82
FUG-004	N/A	Ambient	N/A	N/A	1235	NA	4378315.20	538098.82
G-1	~1.0	550	1,000	1	1235	5	4378315.20	538098.82
G-2	~1.0	550	1,000	-	1235	5	4378315.20	538098.82
1B	N/A	Ambient	N/A	N/A	1235	NA	4378315.20	538098.82
2B	N/A	Ambient	N/A	N/A	1235	NA	4378315.20	538098.82
RP	N/A	Ambient	N/A	N/A	1235	NA	4378315.20	538098.82
CBB	N/A	Ambient	N/A	N/A	1235	NA	4378315.20	538098.82

¹Give at operating conditions. Include inerts.
² Release height of emissions above ground level.

ATTACHMENT K: FUGITIVE EMISSIONS POINTS DATA SUMMARY SHEET

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	☐ Yes No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	☐ Yes ☐ No
 	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes No
 	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²	Potential Emissions ²	Maximum Potential Controlled Emissions 3	otential issions ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Osed
Haul Road/Road Dust Emissions Paved Haul Roads						=
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOC HAP	15.9109 0.2614	69.6897 1.1451	5.6097 0.0917	24.5705	O (EPA 453/R- 95-017)
General Clean-up VOC Emissions						
Other						

¹List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O2, and Noble Gases.

²Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute). batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify)

ATTACHMENT L: EMISSION UNIT DATA SHEETS

EUDS -- Process Heaters -- H-5781

EUDS – Fugitive Emissions

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): H-5781

Tablian and the about the
Name or type and model of proposed affected source:
Heatec Process Heater, 50.78 MMBtu/hr
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
. ×
Natural gas, 50.78 MMBtu/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Natural gas, 50.78 MMBtu/hr
Natural gas, 50.76 MMMDtwin
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
154
Combustion of natural gas
* The identification number which appears here must correspond to the air pollution control device

identification number appearing on the List Form.

6. Co	mbustion Da	ata (if applic	able):			
(a)	Type and a	mount in ap	propriate units of	fuel(s) to be bu	ırned:	
Natura	al gas, 395.78 r	mmscf/yr				
(b)	Chemical a and ash:	nalysis of pi	roposed fuel(s), e	xcluding coal, in	ncluding maxim	um percent sulfur
Sulfur	and ash are ins	significant.				
(c)	Theoretical	combustion	air requirement	(ACF/unit of fue	el):	
1	Unknown	@		°F and		psia.
(d)	Percent exc	ess air:	Jnknown			
(e)	Type and B	TU/hr of bu	rners and all othe	r firing equipme	ent planned to b	pe used:
	n Kinedizer LE					
(f)	If coal is pro coal as it wi		source of fuel, id	entify supplier a	and seams and	give sizing of the
N/A						
24						
(g)	Proposed m	naximum de	sign heat input:	4	1	× 10 ⁶ BTU/hr.
7. Pro	jected opera	ating schedu	ıle:			<u> </u>
Hours/	Day	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of polluta devices were used:	ants that would be	emitted fro	m this affected source if no control
@	~730	°F and	d	14.7 psia
a.	NO _X	3.30	lb/hr	grains/ACF
b.	SO ₂	0.03	lb/hr	grains/ACF
c.	СО	2.03	lb/hr	grains/ACF
d.	PM ₁₀	0.41	lb/hr	grains/ACF
e.	Hydrocarbons	N/A	lb/hr	grains/ACF
f.	VOCs	0.61	lb/hr	grains/ACF
g.	Pb	N/A	lb/hr	grains/ACF
h.	Specify other(s)			
	НАР	0.09	lb/hr	grains/ACF
	CO2(e)	6,541.19	lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None Proposed	Record Operating hours
REPORTING	TESTING
As Deswined	N/A
As Required	IVA
MONITORING. PLEASE LIST AND DESCRIBE THE PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	OSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISPOLLUTION CONTROL DEVICE.	
10. Describe all operating ranges and mainten maintain warranty	ance procedures required by Manufacturer to

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

For chemical processes please fill ou check all supplementary forms that ha	ut this sheet and all supplementary fo ve been completed.	orms (see below) that apply. Please
 ☐ Emergency Vent Summary St ☐ Leak Sources Data Sheet ☐ Toxicology Data Sheet ☐ Reactor Data Sheet ☐ Distillation Column Data Sheet 	et	
Chemical process area name Components in natural gas and	and equipment ID number (as shown i light liquid service	in Equipment List Form)
 Standard Industrial Classificat 1321 	ion Codes (SICs) for process(es)	
 List raw materials and		
4. List Products and Maximum P	roduction and ☐ attach MSDSs	
Description and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)
5. Complete the Emergency Ven	t Summary Sheet for all emergency re	lief devices.
maintenance program to minimiz methods, planned inspection frequ rule requirement (e.g. 40CFR60, S	Sheet and describe below or attach the fugitive emissions. Include detection under the condition of the fugitive emissions. Include detection under the condition of the fugitive emission of the condition of the fugitive emission of the condition of the condition of the fugitive emission of the condition of the	on instruments, calibration gases or pertinent information. If subject to a minate fugitive leaks from facility
with the provisions of 40 CFR	Seals, connectors, flanges, open-e Part 60, Subpart OOOO, and Met I be used to detect leaks, on a mod above.	hod 21. Instruments meeting the
 Clearly describe below or attach accidental spill or release. 	to application Accident Procedures	to be followed in the event of an
In the event of an accidental personnel will be notified and in details are contained in the Eme	spill or release, personnel will be mmediate steps to stop the spill or e ergency Response manual	e protected, emergency response release will be implemented. More

data sheets (M compound or c duplicate MSD mutagenicity, to where these any h 8B. Describe any h conducted by	ASDS) may be used) outlin hemical entity emitted to the S sheet is not required. In eratogenicity, irritation, and e unknown, and provide referealth effects testing or epidenical to the state of the s	ing the air. nclude other erence lemion	logical studies on these compound r TSCA, RCRA or other federal	onic health effects of each been listed in Item 3, then a reighted average (TWA) or ald be addressed. Indicate its that are being or may be
9. Waste Produc		s: (lf :	source is subject to RCRA or 450	CSR25, please contact the
9A. Types and	amounts of wastes to be dis	spose	ed:	
9B. Method of o	disposal and location of was	ste dis	sposal facilities:	
Carrier:			Phone:	
	• • • • • • • • • • • • • • • • • • • •		rdous Waste Landfill will be used	
			Schedule for process or project as	
circle units:	(hrs/day) (hr/batch)	(day	rs), (batches/day), (batches/week)	(days/yr), (weeks/year)
10A. Maximum				
10B. Typical				
11. Complete a	Reactor Data Sheet for each	ch rea	actor in this chemical process.	
12. Complete a	Distillation Column Data Si	heet f	for each distillation column in this c	hemical process.
Please propose proposed open proposed emiss MONITORING	ating parameters. Please	ng, ai prop	RECORDKEEPING Same	trate compliance with the trate compliance with the
REPORTING Same			TESTING Same	
order to demonstra	te compliance with the ope	eration	parameters and ranges that are pondered of this process equipment operatecordkeeping that will accompany	tion or air pollution control
			ncy of reporting of the recordkeepinns testing for this process equipm	
14. Describe a warranty	Ill operating ranges and r	maint	enance procedures required by	Manufacturer to maintain

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days)³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps	light liquid VOC ^{6,7}	46	40 CFR Subpart OOOO Method 21	15	977.40
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	5,840	40 CFR Subpart 0000 Method 21	15	6,900.82
	Light Liquid VOC	1,631	40 CFR Subpart OOOO Method 21	15	2,127.91
	Non-VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Flanges	VOC	4,912	40 CFR Subpart 0000 Method 21	ائ	11,543.13
	Light Liquid	1,039	40 CFR Subpart OOOO Method 21	15	1,449.79
	Non-VOC				
Connectors	Gas VOC	12,735	40 CFR Subpart OOOO Method 21	15	14,047.70
	Light liquid VOC	4,784	40 CFR Subpart 0000 Method 21	15	11,385.81
Other	VOC	65	40 CFR Subpart 0000 Method 21	15	665.00
	Light Liquid	7	40 CFR Subpart 0000 Method 21	15	43.48

1-13 See notes on the following page.

Notes for Leak Source Data Sheet

- For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gasservice valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O - other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR □51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

EXAMPLE CALCULATIONS

g/hp-hr Emission Factors:

Emission Factor (g/hp-hr) * Engine Rating (hp) * 1 lb/453.6 g = lb/hr

Ib/mmBtu Emission Factors:

Emission Factor (lb/mmBtu) * Engine Rating (hp) * Fuel Use (Btu/hp-hr) * 1 mmBtu/1000000 Btu = lb/hr

lb/mmscf Emission Factors:

Emission Factor (lb/mmscf) * Heater Rating (mmBtu/hr) * 1/Fuel Heating Value (Btu/scf) = lb/hr

Tons per Year (TPY) Conversion:

lb/hr * Hours/Year * 1 ton/2000 lb = TPY

MarkWest Liberty Midstream & Resources L.L.C. Mobley Gas Plant - Phase V

Summary of Potential Emissions

Criteria Pollutant Potential Emissions

			Potential Emissions (lb/hr)	ons (lb/hr)		
r rocess/racinty	NOx	00	NOC	SO ₂	PM¹	HAPs
Waukesha P939OGSI Compressor Engines (5) (Existing)	4,35	5.7	2.6	0.05	1.5	1.05
CAT 3616 Compressor Engines (2) (Existing)	10.44	2.88	5.26	0.04	0.7	1.76
Regeneration Heater H-741 (8.12 MMBttv/hr) (Existing)	0.43	0.33	0.04	00'0	0.05	0.01
Hot Medium Oil Heater H-781 (26.0 MMBtu/ltr) (Existing)	2.31	1.94	0.13	0.01	0.18	0.04
Regeneration Heater H-1741 (6.84 MMBtu/hr) (Existing)	0.36	0.28	0.03	0.00	0.05	0.01
Hot Medium Oil Heater H-1781 (18.05 MMBtu/ln) (Existing)	1.61	1.35	0.09	0.01	0.12	0,03
Regeneration Heaters H-3741 and H-4741 (7.69 MMBtu/ln) (Existing	0.82	0.63	0.08	0.01	0.11	0,03
Hot Medium Oil Heater H-3781 (16.07 MMBtu/ltr) (Existing)	1.58	1.32	0.09	0.01	0.12	0.03
Regeneration Heaters H-5741 (7.69 MMBtu/hr) (New)	0,41	0.32	0.04	0.00	90.0	0.01
Regeneration Heater H-5781 (50.78 MMBtu/hr) (New)	3.30	2.03	0.61	0.03	0.41	0.09
Blowdowns	i	;	;	1	:	ı
Process Flare (Existing)	0.11	0.09	0.01	0.01	0.01	0.08
Fugitives (Modified)	ı	ı	5.61	1	;	0.00
Rod Packing Emissions	;	;	60'0	·	:	0.00
Crankcase Emissions	0.44	0.26	0.24	0.00	0.07	0.08
Emergency Generator - G-1	0.41	0.43	0.41	0.11	00'0	00.00
Emergency Generator - G-2	0.33	0.50	0.17	0.00	0.01	0.01
Future Site-Wide Emissions (lb/hr)	26.89	18,06	15.49	0.30	3,38	3.35

 1 PM = PM $_{10}$ = PM $_{2.5}$

	CO 24.95 12.58 1.46 8.51	VOC 11.45	Ş	1000	
Compressor Engines (5) (Existing) Engines (2) (Existing) 7-74 (8.12 MMBtu/hr) (Existing) 11-74 (6.84 MMBtu/hr) (Existing) 11-74 (6.84 MMBtu/hr) (Existing) 11-3741 and H-4741 (7.69 MMBtu/hr) (Existing) 1-3741 and H-4741 (7.69 MMBtu/hr) (New) 1-5741 (5.678 MMBtu/hr) (New) 1-5781 (50.78 MMBtu/hr) (New)	24.95 12.58 1.46 8.51	11.45	202	FM.	HAPs
Engines (2) (Existing) 45.72 -741 (8.12 MMBlu/hr) (Existing) 1.88 1.87 1.4741 (6.84 MMBlu/hr) (Existing) 1.59 1.4741 (6.84 MMBlu/hr) (Existing) 7.03 1.4741 (7.09 MMBlu/hr) (Existing) 1.79 1.4741 (7.09 MMBlu/hr) (Existing) 1.79 1.79 1.79 1.79 1.79 1.79	12.58 1.46 8.51		0.2	6.55	4.6
741 (8.12 MMBtu/hr) (Existing) 1.88 1.4741 (6.84 MMBtu/hr) (Existing) 1.79 1.741 (6.84 MMBtu/hr) (Existing) 1.59 1.703 1.703 1.703 1.704 1.6.74 I and H-4741 (7.69 MMBtu/hr) (Existing) 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79	1.46	23.04	0.18	3.1	7.68
10.13 11.41 (6.84 MMBtu/hr) (Existing) 11.59 11.741 (6.84 MMBtu/hr) (Existing) 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.79 11.79 11.79 11.79 11.79 11.79 11.79	8.51	0.04	00.0	0.05	0.01
1.59 1.741 (6.84 M/MBtu/hr) (Existing) 1.59 1.43781 (18.05 M/MBtu/hr) (Existing) 1.37 1.3741 and H-4741 (7.69 M/MBtu/hr) (Existing) 1.5781 (16.07 M/MBtu/hr) (New) 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79		0.56	90'0	0.77	0.19
F H-1781 (18.05 MMBhu/hr) (Existing) 7.03 7-3741 and H-4741 (7.69 MMBhu/hr) (Existing) 3.57 F H-3781 (16.07 MMBhu/hr) (New) 1.79 F-5781 (50.78 MMBhu/hr) (New) 14.46	1,23	0.15	0.02	0.20	0,05
1-3741 and H-4741 (7.69 MMBtu/hr) (Existir 3.57 rr H-3781 (16.07 MMBtu/hr) (Rew) 1.79 r.H-3781 (50.78 MMBtu/hr) (New) 14.46 r.H-5781 (50.78 MMBtu/	5.91	0.39	0.04	0.53	0.13
F. H-3781 (16.07 MMBtu/hr) (Existing) 6.90 6.90 1.79 1.79 1.79 1.46 1.79 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	2.76	0.36	0.04	0.50	0.12
1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79	5.80	0.38	0.04	0.52	0.13
-5781 (50.78 MMBtufhr) (New) 14.46 - 0.48	1.38	0.18	0.02	0.25	0.00
	8.90	2.67	0.13	1.78	0,41
	•	9.01	i	1	0,11
	0.39	0.04	0.04	0.04	0,35
	1	24.57	ī	:	0,40
_	;	0.40	ı	;	0.01
CETHOSPICIO	1.13	1.03	0.01	0.29	0,37
Emergency Generator - G-1	0.11	0.10	0.03	00'0	00.00
-G-2	0.12	0.04	00.0	0.00	0.00
Future Site-Wide Emissions (lb/hr)	75.22	74.42	0.82	14,61	14.64

r.e
ě
Š
ž
Ē
7
pnfini
Ξ
۵
+
ī
₹
Ξ
Ā
ď
_
٤
ゼ

Process(Raciller				HAPs - Pote	HAPs - Potential Emissions (Ib/hr)	b/hr)			
1 Occasi acinty	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Ethylbenzene Formaldehyde	Methanol	n-Hexane	Toluene	Xylenes
Waukesha P9390GSI Compressor Engines (5) (Existing)	2.00E-01	2.00E-01	1.00E-01	5.00E-02	2.00E-01	2.50E-01		5.00E-02	5.00E-02
CAT 3616 Compressor Engines (2) (Existing)	6.00E-01	3.60E-01	1.00E-02	2,00E-02	5.40E-01	1.80E-01	ŀ	2.00E-02	2.00E-02
Regeneration Heater H-741 (8.12 MMBtu/hr) (Existing)	:	1	1.52E-05	ł	5.42E-04	ľ	1.30E-02	2.46E-05	!
Hot Medium Oil Heater H-781 (26.0 MIMBtu/hr) (Existing)	;	ı	4.86E-05	ł	1.73E-03	ì	4.16E-02	7.86E-05	1
Regeneration Heater H-1741 (6.84 MMBtu/hr) (Existing)	;	1	1.28E-05	ł	4.56E-04	1	1.10E-02	2,07E-05	:
Hot Medium Oil Heater H-1781 (18.05 MMBtu/lnr) (Existing)	:	1	3.37E-05	:	1.20E-03	ı	2.89E-02	5.46E-05	1
Regeneration Heaters H-3741 and H-4741 (7.69 MMBtu/hr) (Existing	ı	1	3.17E-05	i	1.13E-03	1	2.71E-02	5,13E-05	1
Hot Medium Oil Heater H-3781 (16.07 MMBtu/lır) (Existing)	•	:	3.31E-05	:	1.18E-03	:	2.84E-02	5.36E-05	ı
Regeneration Heaters H-5741 (7.69 MMBtu/hr) (New)	:	:	1.58E-05	Ĺ	5.65E-04	:	1.36E-02	2.56E-05	1
Regeneration Heater H-5781 (50.78 MMBtu/hr) (New)	ï	:	1.05E-04	1	3.73E-03	:	8.96E-02	1.69E-04	1
Blowdowns	ī	;	1	;	;	1	1	;	
Process Flare (Existing)	1	į	1	ł	;	;	1		1
Fugitives (Modified)	:	1	1	1	ř	ı	1	1	·
Rod Packing Emissions	ī	i	2.42E-05	0.00E+00	ı	f	1.07E-03	2.85E-05	3 29E-05
Crankcase Emissions	2.40E-02	1.68E-02	3.30E-03	2.10E-03	2.22E-02	1.29E-02	1	2.10E-03	2.10E-03
Emergency Generator - G-1	3.16E-04	3.81E-05	3.85E-04	:	4.86E-04	i	100	1.69E-04	1.17E-04
Emergency Generator - G-2	4.98E-03	3.06E-03	2.62E-04	2.36E-05	1.52E-03	1,49E-03	3	2.43E-04	1.10E-04
Future Site-Wide Emissions (1b/hr)	0.83	0.58	0.11	0.07	0.77	0.44	0.25	0.07	0.07

Draeace (Hacillity				HAPs - Pot	HAPs - Potential Emissions (tpy	tpy)			
A LOCASA MAINT	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Ethylbenzene Formaldehyde	Methanol	n-Hexane	Toluene	Xvienes
Waukesha P939OGSI Compressor Engines (5) (Existing)	9.50E-01	9,00E-01	5.50E-01	5.00E-02	9.50E-01	1.05E+00		2.00E-01	5 00E-02
CAT 3616 Compressor Engines (2) (Existing)	2.60E+00	1.60E+00	1.40E-01	2.00E-02	2.38E+00	7.80E-01	ı	1.20E-01	6.00E-02
Regeneration Heater H-741 (8.12 MMBtu/hr) (Existing)		ł	6.64E-05	1	2,37E-03	ł	5.70E-02	1.08E-04	
Hot Medium Oil Heater H-781 (26.0 MMBtu/hr) (Existing)	1	ı	2.13E-04	1	7,60E-03	;	1.82E-01	3.44E-04	,
Regeneration Heater H-1741 (6.84 MMBtu/lir) (Existing)	1	ì	5.60E-05	i	2,00E-03	ı	4.80E-02	9.06E-05	ì
Hot Medium Oil Heater H-1781 (18.05 MMBtu/ltr) (Existing)	1	ã	1.48E-04	1	5.28E-03	1	1.27E-01	2.39E-04	1
Regeneration Heaters H-3741 and H-4741 (7.69 MMBtu/hr) (Existing	ī	1	1.39E-04	Į	4.95E-03	1	1.19E-01	2.25E-04	!
Hot Medium Oil Heater H-3781 (16.07 MMBtu/ln) (Existing)	ï	Ē	1,45E-04	1	5.18E-03	ı	1.24E-01	2.35E-04	;
Regeneration Heaters H-5741 (7.69 MMBtu/hr) (New)	:	1	6.93E-05	;	2.48E-03	!	5.94E-02	1.12E-04	,
Regeneration Heater H-5781 (50.78 MMBtu/lir) (New)	Ī	;	4.58E-04	1	1.64E-02	1	3.93E-01	7.41E-04	;
Blowdowns	:	:	i	;	ŧ	ł	i	:	;
Process Flare (Existing)	i	1	1	;	í	Ĭ		1	. !
Fugitives (Modified)	ı	ł	1	;	1		1	1	1.
Rod Packing Emissions	ſ	;	1.06E-04	0.00E+00	*	1	4.68E-03	1.25E-04	1 44F-04
Crankcase Emissions	1.07E-01	7.50E-02	2.07E-02	2.10E-03	9.99E-02	5.49E-02	i	9.60F-03	3 30E-03
Emergency Generator - G-1	7.90E-05	9.53E-06	9.61E-05	:	1.22E-04	ı	1	4.21E-05	2.94E-05
Emergency Generator - G-2	1.24E-03	7.65E-04	6.55E-05	5.91E-06	3.80E-04	3.72E-04		6.08E-05	2.74E-05
Future Sitc-Wide Emissions (tpy)	3,66	2.58	0.71	0.07	3,48	1.89	1.11	0.33	0.11

Greenhouse Gas Potential Emissions

OLOCALIDAD A GARAGE MINISTORY	GHG
Process/Facility	CO _{2(e)} (tpy)
Waukesha P939OGSI Compressor Engines (5) (Existing)	43487.4
CAT 3616 Compressor Engines (2) (Existing)	39569.86
Regeneration Heater H-741 (8.12 MMBtu/hr) (Existing)	4577.03
Hot Medium Oil Heater H-781 (26.0 MMBtu/hr) (Existing)	14824.60
Regeneration Heater H-1741 (6.84 MMBtu/ltr) (Existing)	3855.52
Hot Medium Oil Heater H-1781 (18.05 MMBtu/ln) (Existing)	10174.30
Regeneration Heaters H-3741 and H-4741 (7.69 MMBtu/lir) (Existing	9553.98
Hot Medium Oil Heater H-3781 (16.07 MMBtu/hr) (Existing)	9982.61
Regeneration Heaters H-5741 (7.69 MIMBtu/hr) (New)	4338.56
Regeneration Heater H-5781 (50.78 MMBtu/hr) (New)	28650.40
Process Flare (Existing)	828.75
Fugitives (Modified)	529.25
Rod Packing Emissions	36.87
Crankcase Emissions	2491.72
Emergency Generator - G-1	16.86
Emergency Generator - G-2	6.84
Future Site-Wide Emissions (lb/hr)	172924.54

MarkWest Liberty Midstream & Resources L.L.C. Mobley Gas Plant - Difference Between Phase IV and Phase V

Summary of Potential Emissions

Criteria Pollutant Potential Emissions

Ş			Potential Emissions (lb/hr)	issions (Ib/hr)		
Process/kacility	NOx	00	VOC	SO_2	PM¹	HAPs
Previous Permit	24.77	16.90	10.27	0.18	3.38	3.42
Current Permit Application	26.89	18.06	15.49	0.30	3.38	3.35
Difference in Site-Wide Emissions (lb/hr)	2.12	1.16	5.22	0.12	0.00	-0.07

 1 PM = PM $_{10}$ = PM $_{2.5}$

Previous Permit NOx CO VOC SO2 PM¹ HAPs Previous Permit Application 108.60 73.98 46.14 0.75 14.65 15.01 Current Permit Application 114.83 75.22 74.42 0.82 14.61 14.64 Difference in Site-Wide Emissions (lb/hr) 6.23 1.24 28.28 0.07 -0.04 -0.37	E			Potential En	Potential Emissions (tpy)		
Application 108.60 73.98 46.14 0.75 14.65 Application 114.83 75.22 74.42 0.82 14.61 iite-Wide Emissions (lb/hr) 6.23 1.24 28.28 0.07 -0.04	Process/Facility	NOx	00	NOC	SO_2	PM¹	HAPs
Application 114.83 75.22 74.42 0.82 14.61 iite-Wide Emissions (lb/hr) 6.23 1.24 28.28 0.07 -0.04	Previous Permit	108.60	73.98	46.14	0.75	14.65	15.01
missions (lb/hr) 6.23 1.24 28.28 0.07 -0.04	Applic	114.83	75.22	74.42	0.82	14.61	14.64
	Difference in Site-Wide Emissions (lb/hr)	6.23	1.24	28.28	0.07	-0.04	-0.37

 1 PM = PM $_{10}$ = PM $_{2.5}$

Hazardous Air Pollutant Potential Emissions

Decree / Roality				HAPs - Po	HAPs - Potential Emissions (lb/hr)	s (lb/hr)			
1 Occasir acmry	Acetaldehyde	Acrolein	Benzene	Ethylbenzene Formaldehyde	Formaldehyde	Methanol	n-Hexane	Toluene	Xylenes
Previous Permit	0.84	09.0	0.13	0.08	0.79	0.48	0.15	0.08	0.08
Current Permit Application	0.83	0.58	0.11	0.07	0.77	0.44	0.25	0.07	0.07
Difference in Site-Wide Emissions (lb/hr)	-0.01	-0.02	-0.02	-0.01	-0.02	-0.04	0.10	-0.01	-0.01
Droces (Reciller)				HAPs - P	HAPs - Potential Emissions (tpy)	ns (tpy)			
I I OCCSS/L'ACINE)	Acetaldehyde	Acrolein	Benzene	Ethylbenzene	Ethylbenzene Formaldehyde	Methanol	n-Hexane	Toluene	Xylenes
Previous Permit	3.74	2.68	0.80	0.08	3.55	2.04	99.0	0.36	0.12
Current Permit Application	3.66	2.58	0.71	0.07	3.48	1.89	1.11	0.33	0.00
Difference in Site-Wide Emissions (lb/hr)	-0.08	-0.10	-0.09	-0.01	-0.07	-0.15	0.45	-0.03	-0.12

Greenhouse Gas Potential Emissions

Decogo (Coollite)	GHG
r rocess/racinty	$CO_2(e)$ (tpy)
Previous Permit	163244.57
Current Permit Application	172924.54
Difference in Site-Wide Emissions (lb/hr)	9679.97

MarkWest Liberty Midstream & Resources L.L.C.

Mobley Gas Plant

HMO Heater (H-5781)

Source Designation:	
Manufacturer:	Heatec
Year Installed	TBD
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,124
Heat Input (MMBtu/hr)	50.78
Fuel Consumption (mmscf/hr):	4.52E-02
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates

	Emission Factor	Potentia	Emissions
Pollutant	(lb/MMscf) ^{a,b}	(lb/hr) ^e	(tons/yr) ^d
NO _x	73.1	3.30	14.46
CO	45.0	2.03	8.90
SO ₂	0.7	0.03	0.13
PM Total	9.0	0.41	1.78
PM Condensable	6.3	0.28	1.24
PM ₁₀ (Filterable)	2.1	0.09	0.41
PM _{2.5} (Filterable)	2.1	0.09	0.41
VOC	13.5	0.61	2.67
CO ₂	58.4 kg/mmbtu	6541.05	28649.80
CH₄	0.001 kg/mmbtu	0.12	0.54
N ₂ O	0.0001 kg/mmbtu	0.01	0.05
CO ₂ (e)	5 :	6547.47	28677.90

Hazardous Air Pollutant (HAP) Potential Emissions

	Emission Factor	Potentia	al Emissions
Pollutant	(lb/MMscf) ^a	(lb/hr) ^e	(tons/yr) ^d
HAPs:			
3-Methylchloranthrene	· 1.98E-06	8.96E-08	3.93E-07
7,12-Dimethylbenz(a)anthracene	1.76E-05	7.97E-07	3.49E-06
Acenaphthene	1.98E-06	8.96E-08	3.93E-07
Acenaphthylene	1.98E-06	8.96E-08	3.93E-07
Anthracene	2.64E-06	1.19E-07	5.23E-07
Benz(a)anthracene	1.98E-06	8.96E-08	3.93E-07
Benzene	2.31E-03	1.05E-04	4.58E-04
Benzo(a)pyrene	1.32E-06	5.97E-08	2.62E-07
Benzo(b)fluoranthene	1.98E-06	8.96E-08	3.93E-07
Benzo(g,h,i)perylene	1.32E-06	5.97E-08	2.62E-07
Benzo(k)fluoranthene	1.98E-06	8.96E-08	3.93E-07
Chrysene	1.98E-06	8.96E-08	3.93E-07
Dibenzo(a,h) anthracene	1.32E-06	5.97E-08	2.62E-07
Dichlorobenzene	1.32E-03	5.97E-05	2.62E-04
Fluoranthene	3.31E-06	1.49E-07	6.54E-07
Fluorene	3.09E-06	1.39E-07	6.11E-07
Formaldehyde	8.26E-02	3.73E-03	1.64E-02
- Iexane	1.98E+00	8.96E-02	3.93E-01
ndo(1,2,3-cd)pyrene	1.98E-06	8.96E-08	3.93E-07
Phenanthrene	1.87E-05	8.46E-07	3.71E-06
Pyrene	5.51E-06	2.49E-07	1.09E-06
Foluene	3.75E-03	1.69E-04	7.41E-04
Arsenic	2.20E-04	9.96E-06	4.36E-05
Beryllium	1.32E-05	5.97E-07	2.62E-06
Cadmium	1.21E-03	5.48E-05	2.40E-04
Chromium	1.54E-03	6.97E-05	3.05E-04
Cobalt	9.26E-05	4.18E-06	1.83E-05
Lead	5.51E-04	2.49E-05	1.09E-04
Manganese	4.19E-04	1.89E-05	8.29E-05
Mercury	2.87E-04	1.29E-05	5.67E-05
Nickel	2.31E-03	1.05E-04	4.58E-04
Selenium	2.64E-05	1.19E-06	5.23E-06
Deboord: Owner Western		•	
Polycyclic Organic Matter:	2 640 05	1 10E 06	5.23E-06
Methylnaphthalene (2-)	2.64E-05 6.72E-04	1.19E-06 3.04E-05	1.33E-04
Vaphthalene	0./ZE-U4	5.04E-03	1.55E-04
Total HAP		9.40E-02	4.12E-01

_a Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3 (07/98) for all criteria and HAP pollutants, corrected to site-specific gas heat content.

^b Emission factors for GHG pollutants from 40 CFR Part 98, Subpart C and corrected to site-specific gas heat content.

^c Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

 $^{^{}d} \ Annual \ Emissions \ (tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum \ Allowable \ Operating \ Hours, \ 8760 \ hr/yr) \times (1 \ ton/2000 \ lb).$

Emergency Generator Engine Emissions (Per Engine)

(G-1)

Source Designation:	
Manufacturer:	Generac
Model No.:	MMG45
Stroke Cycle:	4-stroke
Type of Burn:	Diesel
Year Installed	
Fuel Used:	Diesel
Fuel High Heating Value (HHV) (Btu/gal):	137,380
Rated Horsepower (bhp):	53
Specific Fuel Consumption (gal/hr)	3.0
Maximum Fuel Consumption at 100% Load (gal/hr):	3.0
Heat Input (MMBtu/hr)	0.41
Stack Designation:	

Operational Details:

Potential Annual Hours of Operation (hr/yr):	500
Potential Fuel Consumption (gal/yr):	1,500

Criteria and Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors ^a	Units
NOx	3.50	g/bhp-hr
CO (uncontrolled)	3.70	g/bhp-hr
CO (controlled)	3.70	g/bhp-hr
SO ₂	2.05E-03	g/bhp-hr
PM ₁₀ (Filterable)	2,20E-02	g/bhp-hr
PM _{2.5} (Filterable)	2.20E-02	g/bhp-hr
PM Condensable	2.20E-02	g/bhp-hr
PM Total	2.20E-02	g/bhp-hr
VOC (uncontrolled)	3.50	g/bhp-hr
VOC (controlled)	3.50	g/bhp-hr

Emergency Generator Engine Emissions (Per Engine) (G-1)

Criteria and Manufacturer Specific Pollutant Emission Rates

Z	Potentia	I Emissions			
Pollutant	(lb/hr) ^b	(lb/hr) ^b (tons/yr) ^c			
NO _x	0.41	0.10			
CO (uncontrolled)	0.43	0.11			
CO (controlled)	0.43	0.11			
SO ₂	0.11	0.03			
PM ₁₀ (Filterable)	0.00	0.00			
PM _{2.5} (Filterable)	0.00	0.00			
PM Condensable	0.00	0.00			
PM Total	0.00	0.00			
VOC (uncontrolled)	0.41	0.10			
VOC (controlled)	0.41	0.10			

Hazardous Air Pollutant (HAP) Potential Emissions

	Emission Factor	Potentia	l Emissions
Pollutant	(lb/MMBtu) ²	(lb/hr) ^b	(tons/yr)
HAPs:			
Acetaldehyde	7.67E-04	0.0003	0.0001
Acrolein	9.25E-05	0.0000	0.0000
Benzene	9.33E-04	0.0004	0.0001
1,3-Butadiene	3.91E-05	0.0000	0.0000
Formaldehyde	1.18E-03	0.0005	0.0001
Toluene	4.09E-04	0.0002	0.0000
Xylene	2.85E-04	0.0001	0.0000
Polycyclic Organic Matter:			
Naphthalene	8.48E-05	0.0000	0.0000
Fotal HAP		0.00	0.00

^a HAP emission factors from AP-42 Section 3.2, Table 3.3-2 "Speciated Organic Compound Emission Factors for Uncontrolled Diesel Engines," Supplement F, October 1996. Criteria pollutant factors are based on EPA Tier IV standards.

^b Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr or bhp) × Emission Factor (lb/MMBtu or lb/bhp-hr).

 $^{^{}c} \ Annual \ Emissions \ (tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum \ Allowable \ Operating \ Hours/yr) \times (1 \ ton/2000 \ lb).$

Emergency Generator Engine Emissions (Per Engine) (G-2)

Source Designation:	
Manufacturer:	Kohler
Model No.:	40ERES
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Year Installed	2011
Fuel Used:	Natural Gas
Fuel High Heating Value (HHV) (Btu/ft³):	1,020
Rated Horsepower (bhp):	75
Specific Fuel Consumption (ft³/hr)	584
Maximum Fuel Consumption at 100% Load (ft3/hr):	584
Heat Input (MMBtu/hr)	0.60

Operational Details:

Potential Annual Hours of Operation (hr/yr):	500
Potential Fuel Consumption (ft³/yr):	292,000

Criteria and Manufacturer Specific Pollutant Emission Factors:

Pollutant	Emission Factors ^a	Units
NOx	2.00	g/bhp-hr
CO (uncontrolled)	3.00	g/bhp-hr
CO (controlled)	3.00	g/bhp-hr
SO ₂	5.88E-04	lb/MMBtu
PM ₁₀ (Filterable)	7.71E-05	lb/MMBtu
PM _{2.5} (Filterable)	7.71E-05	lb/MMBtu
PM Condensable	9.91E-03	lb/MMBtu
PM Total	9.99E-03	lb/MMBtu
VOC (uncontrolled)	1.00	g/bhp-hr
VOC (controlled)	1.00	g/bhp-hr

Emergency Generator Engine Emissions (Per Engine) (G-2)

Criteria and Manufacturer Specific Pollutant Emission Rates

	Potentia	l Emissions	
Pollutant	(lb/hr) ^b	(tons/yr) ^c	
NO _x	0.33	0.08	
CO (uncontrolled)	0.50	0.12	
CO (controlled)	0.50	0.12	
SO ₂	0.000	0.00	
PM ₁₀ (Filterable)	0.000	0.00	
PM _{2.5} (Filterable)	0.000	0.00	
PM Condensable	0.006	0.00	
PM Total	0.006	0.00	
VOC (uncontrolled)	0.17	0.04	
VOC (controlled)	0.17	0.04	
		ŀ	

Hazardous Air Pollutant (HAP) Potential Emissions

	Emission Factor	Potentia	l Emissions
Pollutant	(lb/MMBtu) ^a	(lb/hr) ^b	(tons/yr) ^c
HAPs:			
1,1,2,2-Tetrachloroethane	4.00E-05	2.38E-05	5.96E-06
1,1,2-Trichloroethane	3.18E-05	1.89E-05	4.74E-06
1,3-Butadiene	2.67E-04	1.59E-04	3.98E-05
1,3-Dichloropropene	2.64E-05	1.57E-05	3.93E-06
Acetaldehyde	8.36E-03	4.98E-03	1.24E-03
Acrolein	5.14E-03	3.06E-03	7.65E-04
Benzene	4.40E-04	2.62E-04	6.55E-05
Carbon Tetrachloride	3.67E-05	2.19E-05	5.47E-06
Chlorobenzene	3.04E-05	1.81E-05	4.53E-06
Chloroform	2.85E-05	1.70E-05	4.24E-06
Ethylbenzene	3.97E-05	2.36E-05	5.91E-06
Ethylene Dibromide	4.43E-05	2.64E-05	6.60E-06
Formaldehyde	2.55E-03	1.52E-03	3.80E-04
Methanol	2.50E-03	1.49E-03	3.72E-04
Methylene Chloride	2.00E-05	1.19E-05	2.98E-06
Naphthalene	7.44E-05	4.43E-05	1.11E-05
PAH	2.69E-05	1.60E-05	4.01E-06
Styrene	2.36E-05	1.41E-05	3.51E-06
Toluene	4.08E-04	2.43E-04	6.08E-05
Vinyl Chloride	1.49E-05	8.88E-06	2.22E-06
Xylene	1.84E-04	1.10E-04	2.74E-05
Total HAP		0.01	0.00

^a SO₂, PM, and HAP emission factors (excluding HCHO) from AP-42 Section 3.2, Table 3.2-2"Uncontrolled Emission Factors for 4-Stroke

b Emission Rate (lb/hr) = Rated Capacity (MMBtu/hr or bhp) × Emission Factor (lb/MMBtu or lb/bhp-hr).

 $[^]c \ Annual \ Emissions \ (tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum \ Allowable \ Operating \ Hours, 8,760 \ hr/yr) \times (1 \ ton/2000 \ lb).$

MarkWest Liberty Midstream & Resources L.L.C. Mobley Gas Plant

Blowdowns

VOC and HAP Vented Blowdown Emissions

		Vented Gas	Number of		Flare	Potential	Potential	Potential	Potential	Potential
		Volume Per	Blowdown	Total Volume	Control	VOC	HAP	CO ₂	CH4	CO ₂ (e)
Blowdown Emissions Number of	Number of	Blowdown	Events per	NG Emitted	Efficiency	Emissions	Emissions	Emissions	弫	Emissions
Sources	Units	Event (scf)	year	(scf/yr)	(%)	(tpy)	(tpy)	(tpy)	(tby)	(tpy)
Engines	2	2,200	36	158,400	0	0.59	0.007	0.017	2.561	53.804
Engines	5	920	36	165,600	0	0.61	0.008	0.017	2.678	56,250
Plant Blowdowns	1	289,840	365	105,791,600	86	7.82	860.0	0.221	34.213	718.692
	Total Compre	Total Compressor Blowdown Emissions	missions			1.20	0.015	0.034	5,239	110.054
	Total Plan	Total Plant Blowdown Emission	ssions			7.82	0.098	0.221	34.213	718.692
		Total				9.0	0.114	0.255	39.452	828.746
Density of natural gas:	0.05	16/ft3 @ STP (www.engineeringtoolbox.com)	gineeringtoolbox.co	(mc						

Fugitive Emissions

										Emissions		
Component Type	No. of Components	Service ¹	AP-42 Leak Factor (kg/hr/component)	Reduction ²	Post-Control Emission Factor	VOC Wt %3	HAP Wt %3					
					(Kg/hr/component)			Total HC (lb/hr)	Total VOC (lb/hr)	Total VOC (tpy)	Total HAP (lb/hr)	Total HAP (tpy)
Flange	7	Vapor	3.90E-04	30%	2.73E-04	100,00%	1.26%	0.0042	0.0042	0.0185	0.0001	0,0002
				Compression Total				0.0042	0.0042	0.0185	0.0001	0.0002
Compressor	80	Vapor	8.80E-03	%58	1,32E-03	100.00%	1.26%	0.0233	0.0233	0.1020	0.0003	0.0013
Flange	41	Light Liquid	1,10E-04	30%	7.70E-05	100.00%	2.42%	0.0070	0.0070	0.0305	0.0002	0.0007
Flange	113	Vapor	3.90E-04	30%	2.73E-04	25.00%	%69'0	0.0681	0.0374	0.1639	0.0005	0.0021
Flange	524	Vapor	3.90E-04	30%	2.73E-04	100.00%	1.26%	0.3156	0.3156	1.3822	0.0040	0.0174
Flange	235	Vapor	3.90E-04	30%	2.73E-04	15.00%	0.19%	0.1415	0.0212	0.0930	0,0003	0,0012
Flange	40	Vapor	3.90E-04	30%	2.73E-04	0.50%	0.01%	0.0241	0.0001	0,0005	0.0000	0.000
Connector	2	Light Liquid	2.10E-04	30%	1.47E-04	55.00%	1.33%	90000	0.0004	0.0016	0.0000	0,000
Connector	280	Ught Liquid	2.10E-04	30%	1.47E-04	100.00%	2.42%	0.0908	0.0908	0.3977	0.0022	0.0096
Connector	142	Vapor	2.00E-04	30%	1.40E-04	0.50%	0.01%	0.0439	0.0002	0.0010	0.0000	0.000
Connector	307	Vapor	2.00E-04	30%	1.40E-04	25.00%	%69'0	0.0948	0.0521	0.2284	0.0007	0.0029
Connector	868	Vapor	2.00E-04	30%	1.40E-04	15.00%	0.19%	0,2681	0.0402	0.1761	0,0005	0.0022
Connector	1422	Vapor	2.00E-04	30%	1.40E-04	100.00%	1.26%	0.4392	0.4392	1.9236	0.0055	0.0242
PRD	28	Vapor	8.80E-03	%46	2.64E-04	100.00%	1.26%	0.0163	0,0163	0.0714	0.0002	0.0009
PRD	8	Vapor	8.80E-03	92%	2.64E-04	22,00%	0.69%	0.0017	0.0010	0.0042	0.0000	0.0011
PRD	12	Vapor	8.80E-03	%26	2.645-04	15.00%	0.19%	0.0070	0,0010	0.0046	0.0000	0.0001
Ритр	9	Vapor	2.40E-03	85%	3.60E-04	100.00%	1.26%	0.0048	0.0048	0.0209	0.0001	0.0003
Valve	4	Light Liquid	2.50E-03	%26	7.50E-05	55.00%	1.33%	0.0007	0.0004	0.0016	0.0000	0.0000
Valve	97	Ught Uquid	2,50E-03	%26	7.50E-05	100.00%	2.42%	0,0160	0,0160	0.0703	0,0004	0.0017
Valve	47	Vapor	4.50E-03	%26	1.35E-04	0.50%	0.01%	0.0140	0.0001	0.0003	0.0000	0.000
Valve	411	Vapor	4.50E-03	%26	1,35E-04	15.00%	0.19%	0.1224	0.0184	0.0804	0.0002	0.0010
Valve	161	Vapor	4.505-03	%26	1.35E-04	22,00%	0.69%	0.0479	0.0264	0.1155	0.0003	0.0015
Valve	641	Vapor			1.35E-04	100,00%	1.26%	0.1909	0.1909	0.8361	0.0024	0.0105
				DeEthanizer Total				1.9386	1.3027	5,7059	0.0177	0.0777
Compressor	7	Light Liquid	7.50E-03	82%	1.13E-03	100.00%	2.42%	0,0025	0.0025	0.0109	0.0001	0.0003
Compressor		Vapor	8.80E-03	82%	1.32E-03	0.50%	0.01%	0.0029	0.0000	0,0001	0.0000	0.0000
Compressor	4	Vapor	8.80E-03	82%	1.32E-03	15.00%	0.19%	0.0116	0.0017	0.0077	0.0000	0.0001
Flange	88	Ught Uquid	1.10E-04	30%	7.70E-05	100.00%	2.42%	0.0166	0.0166	0,0729	0.0004	0.0018
Hange	514	Vapor	3.90E-04	30%	2.73E-04	15.00%	0.19%	0,3096	0.0464	0.2034	0.0006	0.0026
Flange	777	Vapor	3.90E-04	30%	2.73E-04	0.50%	0.01%	0.0735	0.0004	0.0016	0,000	0.0000
Connector	691	Light Uquid	2.10E-04	30%	1.47E-04	100.00%	2.42%	0.2241	0.2241	0.9815	0.0054	0.0238
Connector	661	Vapor	2.00E-04	30%	1.40E-04	15.00%	0.19%	0.2041	0.0306	0.1341	0.0004	0.0017
Connector	887	Vapor	2.00E-04	30%	1.40E-04	0.50%	0.01%	0.0889	0.0004	0.0019	0.0000	0,000
PRD	4	Light Liquid	7.S0E-03	97%	2.25E-04	100.00%	2.42%	0,0020	0.0020	0.0087	0.0000	0.0002
PRO	17	Vapor	8,80E-03	826	2.64E-04	15.00%	0.19%	0.0099	0.0015	0.0065	0.0000	0.0001
PRO	4	Vapor	8.80E-03	92%	2.64E-04	0.50%	0.01%	0.0023	0.0000	0.0001	0.0000	0.000
Valve	174	Light Uquid	2.50E-03	97%	7.50E-05	100.00%	2.42%	0.0288	0,0288	0.1261	0.0007	0.0031
Valve	230	Vapor	4.50E-03	92%	1.35E-04	15.00%	0.19%	0.0685	0.0103	0.0450	0.0001	0.0006
Valve	115	Vapor	4.50E-03	Į	1.35E-04	0.50%	0.01%	0.0342	0.0002	0.0008	0.0000	0.0000
				Infet Total				1.0796	0.3656	1.6011	0.0078	0.0341

Γ	Ţ	Т	T	T	T	T	٦		Г	Γ	Γ	Т	Τ	Τ	Т	Τ	Т	Τ	T	Ţ	T	Т	Т	Ţ	Т	T	Τ	Т	Т	Ţ	Τ	Τ	Т	Τ	Т	Τ	Τ	Τ	T	Τ	Τ	Т
0.000	0.0037	0000	0.0000	0.0010	0,0105	0.0394	0.0009	0.0087	0.0001	0.0003	0.0000	0.0000	0.0005	0.0001	0.0018	0.0055	0000	00000	0,0049	0,000	0.0781	0.003	0.0005	0,000	0.0029	0.0000	0.0048	0.0074	0.000	0.0245	0.0000	0.0000	1000	0 0004	0.0050	0 0000	0.0052	0.0041	0.0016	0000	0.0000	20000
0.0000	0.0008	0.000	00000	0,000	0.0024	0.0030	0.0002	0.0020	0.0000	0.0001	0.0000	0.0000	0.0001	0.0000	0.0004	0.0012	0.0000	0.0011	0.001	20000	0,0176	70000	0.0001	0,0020	0.0007	0,0000	0.0011	0.0010	0.000	0.0056	0,000	0,000	0,000	0,0001	0,0011	0,000	0.0012	0.0009	0,0004	0,000	0.0000	
0.0002	0.1510	0.0027	0.0831	8858.0	1000	16701	0.0720	0,6899	0.0044	0.0130	0,0001	0.0038	0.0408	0.0070	0.0754	0.2254	0.0013	0.3861	0.0458	4 2700	0,0109	2000	5,112.0	0.220	0.6230	0.0004	0.5911	0.3354	0.0003	1.0113	0.0000	0.0000	0.0080	0.0332	0,2073	0.0010	0.2167	0.3274	0.1266	0.0003	0.0000	0000
0.0000	0.0345	90000	0.0190	0.1915	00.45.0	0.3720	D'OTR#	0.1575	0.0010	0.0030	0,000	6000'0	0,0093	0,0016	0.0172	0.0515	0.0003	0.0882	0.0105	0.9749	0.0025	0.0087	0.1526	0.0537	0000	0.0455	0.1350	0.0766	0.0001	0.2309	0.0000	0.0000	0.0018	0.0076	0.0473	0.0002	0.0495	0.0748	0.0289	0.0001	0.0000	0.0353
0,0087	0.0345	0.1235	0.1265	0.1915	0.3720	0.1006	0.17030	0.1575	0.2029	0.0030	0.0047	0.0058	0.0093	0.0016	0.0172	0.0515	0.0593	0.0882	0.0697	1.6368	0.0025	0.0087	0.1626	0.3547	0.0169	0,0455	0,1350	0,5105	0.0130	0.2309	0.000	0.000	0.0122	0.0076	0.0473	0,0016	0,0495	0.0748	0.1927	0.0149	0,000	1 8808
0.01%	2.42%	0.01%	0.19%	1,26%	2.47%	0.19%	1 200	1.20%	0.01%	2.42%	0.01%	0.19%	1.26%	1.26%	2.42%	2.42%	0.01%	1.26%	0.19%		2.42%	1.26%	1.26%	0.19%	0,01%	2.42%	1.26%	0.19%	0.01%	2.42%	0.19%	2.42%	0.19%	1.26%	2.42%	0.19%	2.42%	1.26%	0.19%	0.01%	0.19%	
0.50%	100.00%	0.50%	15.00%	100.00%	100.00%	15.00%	100.000	100.00%	0.50%	100.00%	0.50%	15.00%	100.00%	100.00%	100.00%	100.00%	0.50%	100.00%	15.00%		100.00%	100.00%	100.00%	15.00%	0.50%	100.00%	100.00%	15.00%	0.50%	100.00%	15.00%	100.00%	15.00%	100.00%	100.00%	15.00%	100.00%	100.00%	15.00%	0.50%	15.00%	
1.32E-03	7.70E-05	2.73E-04	2.73E-04	2,73E-04	1.47E-04	1.405-04	1 405.04	1 405 04	1.405-04	2.25E-04	2.64E-04	2.64E-04	2.64E-04	3.60E-04	1.95E-03	7.50E-05	1.35E-04	1.35E-04	1.35E-04		1,13E-03	1.32E-03	2.73E-04	2.73E-04	2.73E-04	7.70E-05	1.40E-04	1.40E-04	1.40E-04	1.47E-04	0.00E+00	2.25E-04	2.64E-04	2.64E-04	1.95E-03	3.60E-04	7.50E-05	1.35E-04	1.3SE-04	1,35E-04	0.00E+00	
82%	30%	30%	30%	30%	30%	30%	305	76UE	20.0	87%	97%	97%	92%	85%	82%	97%	97%	97%	97%	Mobley 1 Total	85%	85%	30%	30%	30%	30%	30%	30%	30%	30%	30%	97%	97%	97%	82%	82%	97%	97%	97%	97%	97%	Mobiey 2 Total
8.80E-03	1.10E-04	3.90E-04	3.90E-04	3.90E-04	2.10E-04	2.00E-04	2.00F-04	2 005-04	1.00.04	7.502-03	8.80E-03	8.80E-03	8.80E-03	2,40E-03	1.30E-02	2.50E-03	4.50E-03	4.50E-03	4.505-03	Mo	7,505-03	8.80E-03	3.905-04	3.90E-04	3.90E-04	1,106-04	2.00E-04	2.00E-04	2.00E-04	2.10E-04	0.002+00	7.50E-03	8.80E-03	8.80E-03	1.30E-02	2.40E-03	2.50E-03	4.501-03	4.50E-03	4.50E-03	0.00E+00	DIM.
Vapor	Light Liquid	Vapor	Vapor	Vapor	Light Liquid	Vapor	Vapor	Vanor	Take Carded	nigut cidula	Vapor	Vapor	Vapor	Vapor	UBUT UGUIG	Ught Liquid	Vapor	Vapor	Vapor		Light Liquid	Vapor	Vapor	Vapor	Vapor	Ught Uquid	Vapor	Vapor	Vapor	Light Liquid	Vapor	ngur nguid	Vapor	Vapor	Light Uquid	Vapor	Ught Uquid	Vapor	vapor	Vapor	Vapor	
e !	203	202	210	318	1147	355	510	657			»	2 :	ą,	7	4	371	139	296	234		1	m	270	589	28	268	437	1653	42	777	7	,	77:	2 ;	1	7	667	107	\$ 5	2	1	
Compressor	Flange	Flange	Flange	Flange	Connector	Connector	Connector	Connector	090	2 2	PRD	PRO	PRD	Jamp L	Lump	valve	valve	Valve	Valve		Compressor	Compressor	Flange	Flange	Flange	Flange	Connector	Connector	Connector	Connector	Connector	Car.	2 6	L L	dwn	dmp.	valve	Valve	valve	ממואב אייי	Agine	

							֡					2000
Compressor	m	Vapor	8.80E-03	82%	1.32E-03	100.00%	1.26%	0.0087	0.0087	0.0383	0.0001	מטטט
Flange	37	Ught Uquid	1.105-04	30%	7.70E-05	0.50%	0.01%	0.0063	0.000	0 0001	10000	0.000
Flange	41	Light Liquid	1.10E-04	30%	7.70E-05	100.00%	2.42%	0.0070	0.0070	0.000	0,000	0.0000
Flange	429	Vapor	3.90E-04	30%	2.73E-04	0.50%	0.01%	0.2584	0,000	0,000	0.0002	0.000
Flange	209	Vapor	3.90E-04	30%	2.73E-04	15.00%	n 19%	0.1259	00100	0.0037	0.0000	0.000
Flange	244	Vapor	3.90E-04	30%	2.73E-04	100.00%	1 26%	0 1460	0.0409	0.0027	0.0002	0.0010
Connector	æ	Heavy Liquid	7.50E-06	30%	5.25E-06	100.00%	2.42%	0.000	0000	0.0000	0.000	0.0081
Connector	309	Light Liquid	2.10E-04	30%	1.47E-04	0.50%	0.01%	0.1002	0.0005	20000	0.0000	0.0000
Connector	243	Ught Liquid	2.10E-04	30%	1.47E-04	100.00%	7 47%	0.0788	00200	0.0022	0.000	0.0001
Connector	1120	Vapor	2,00E-04	30%	1.40E-04	0.50%	0.01%	0.0760	0,070	0.3451	0.0019	0.0084
Connector	820	Vapor	2.00F-04	30%	1 405-04	700000	1 3687	10250	77000	0.0076	0.0000	0.0001
Connector	440	Vanor	2.005-04	30%	1 40E-04	15 00%	1.2070	0.4250	0.2532	1,1092	0.0032	0.0140
DRO		linht lauld	7 505.02	2000	1.30E-04	13,00%	0.15%	0.1359	0.0204	0.0893	0.0003	0.0011
DED.	ž	Vanor	8 APE-03	20,00	2.235-04	100.00%	2.42%	0,0000	0.0000	0.000	0.0000	0.0000
		vapor.	60-2000	97.8	2.64E-U4	0.50%	0.01%	0.0087	0,000	0.0002	0.0000	0.0000
2 4	5	vapor	6.805-03	8/75	2.64E-04	100.00%	1.26%	0.0052	0.0052	0.0230	0.0001	0.0003
ZKO	6	vapor	8.80E-U3	8/6	2.64E-04	15.00%	0.19%	0,0052	0.0008	0.0034	0.0000	0.0000
Ьишь	9	Vapor	2.40E-03	82%	3.60E-04	0.50%	0.01%	0.0048	0,000	0.0001	0,000	0.000
Ритр	m	Light Uquid	1.30E-02	85%	1.95E-03	100.00%	2.42%	0.0129	0.0129	0.0565	0.0003	0.0014
Valve	79	Light Liquid	2.50E-03	97%	7.50E-05	0.50%	0.01%	0.0131	0.0001	6,0003	0000	00000
Valve	108	Ught Uquid	2.50E-03	97%	7.50E-05	100.00%	2.42%	0.0179	0.0179	0.0783	0.0004	0.000
Valve	413	Vapor	4.50E-03	97%	1.35E-04	0.50%	0.01%	0.1230	0,0006	0.0027	0.000	0000
Valve	307	Vapor	4.50E-03	97%	1.35E-04	15.00%	0.19%	0.0914	0.0137	0.0601	0,000	00000
Valve	328	Vapor	4.50E-03	97%	1.35E-04	100.00%	1.26%	0.0977	0.0977	0.4278	0.002	00000
				Mobiley 3 Total				1,8908	0.6867	3,0078	00100	0000
Compressor	15	Vapor	8.80E-03	82%	1.32E-03	0.50%	0.01%	0.0437	0.0007	0,0010	0000	0000
Compressor	2	Vapor	8.80E-03	85%	1.32E-03	15.00%	0.19%	0.0058	0.000	0.0038	0.0000	00000
Compressor	11	Vapor	8.80E-03	85%	1.32E-03	100.00%	1.26%	0.0320	0.0320	0.1403	0.0004	0.0018
Hange	82	Light Liquid	1.10E-04	30%	7.70E-05	0.50%	0.01%	0.0048	0,000	0.0001	0.0000	0.0000
Hange	323	Light Liquid	1.10E-04	30%	7.70E-05	100.00%	2.42%	0.0549	0.0549	0.2403	0.0013	0.0058
rlange	Ten	vapor	3.90E-04	30%	2.73E-04	0.50%	0.01%	0.0964	0.0005	0.0021	0.000	0.0000
Flange	236	Vapor	3.90E-04	30%	2.73E-04	15.00%	0.19%	0.1421	0.0213	0.0934	0.0003	0.0012
Hange	459	Vapor	3.90E-04	30%	2.73E-04	100.00%	1.26%	0.2764	0.2764	1.2108	0.0035	0.0152
Connector	467	Light Liquid	2.10E-04	30%	1.47E-04	0.50%	0.01%	0.1514	0.0008	0.0033	0.000	0.0001
Connector	930	Light Liquid	2.10E-04	30%	1.47E-04	100,00%	2.42%	0.3016	0.3016	1.3209	0,0073	0.0320
Connector	1220	vapor	2.001-04	30%	1.40E-04	0.50%	0.01%	0.3768	0.0019	0.0083	0.000	0.0001
Connector	1425	vapor	2,00E-04	30%	1.40E-04	15.00%	0.19%	0.2072	0.0311	0.1362	0.0004	0.0017
Connector	OF T	vapor	2,00E-04	30%	1.405-04	100.00%	1.26%	0,3459	0.3459	1.5150	0.0044	0.0191
PRO		Ught Equid	7.50E-03	97%	2.25E-04	100.00%	2.42%	0,0040	0.0040	0.0174	0.0001	0.0004
DEC.	~	Vapor	8.80E-03	97%	2.64E-04	15.00%	0.19%	0.0047	0.0007	0.0031	0.000	0.0000
E S	۲ ا	Vapor	8.80E-03	97%	2.64E-04	100.00%	1.26%	0.0122	0.0122	0.0536	0.0002	0.0007
L L	14	Vapor	8.80E-03	97%	2.64E-04	0.50%	0.01%	0.0082	0.0000	0,0002	0.000	0.0000
Pump	ام	Light Uquid	1.30E-02	82%	1.95E-03	100.00%	2.42%	0.0258	0.0258	0.1130	0.0006	0.0027
Pump	m	Vapor	2.40E-03	85%	3,60£-04	0.50%	0.01%	0.0024	0.000	0.0001	0.0000	0.000
Pump	1	Vapor	2.40E-03	82%	3.605-04	15.00%	0.19%	0.0008	0.0001	0,0005	0.000	0.000
Pump	2	Vapor	2.40E-03	82%	3.60E-04	100.00%	1.26%	0.0016	0.0016	0.0070	0.000	0,0001
Valve	119	Light Liquid	2.50E-03	97%	7,50E-05	0.50%	0.01%	0.0197	0.0001	0.0004	0.000	0.0000
Valve	422	Ught Liquid	2.50E-03	97%	7,50E-05	100.00%	2.42%	0.0698	8690'0	0.3058	0.0017	0.0074
Valve	445	Vapor	4.50E-03	97%	1.35E-04	0.50%	0.01%	0.1325	2000'0	0,0029	0,000	0.000
Valve	344	Vapor	4.50E-03	97%	1.35E-04	15.00%	0.19%	0.1024	0.0154	0.0673	0.0002	0.0008
valve	512	Vapor	4.50E-03	97%	1.35E-04	100.00%	1.26%	0.1525	0.1525	0.6679	0.0019	0.0084
				Mobiley 4 Total				3 5756	COLC F			
			1					243730	4.3503	5.9145	0.0223	72600

All other components in Vapor Service are considered inlet gas including Skids 1.4 in Mobiley 2.

Bassed on Texas Commission on Ervironmental Quality (TCEQ) 28VHP Control Program and guidance titled "Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives". Connectors are monitored with an instrument and have claimed 75% reduction.

Por components in vapor service areas in close drain, pipeline pump/rack, product pump, refrigeration, stabiliser, process skilds, flare, heat exchange, tankage were considered 100% VOC. For components in vapor service liquid service everything considered 100% VOC service except the charge pump skid and deethanizer exchange skid on the deethanizer considered NGL. HAP percentages are conservatively estimated using the ratio of HAP to VOC in the injet gas and the Majorsville Y Grade injet.

MarkWest Liberty Midstream and Resources, L.L.C. Mobley Gas Plant **Rod Packing Emissions**

Emission Factor^a

0.02

(scf CH₄/min)

Mole fraction Methane

0.81

Total Emission Factor

0.02

(scf/min)

MW

Total Emissions

(lbmole/hr)

Number of Compressors

7

20.01

0.50 (lb/hr)

^aBased on 40 CFR Part 98 Subpart W Section 233 Emissions Factors

Pollutant	Mass %	Emissi	ons
Foliatant	IVIASS 70	lb/hr	tpy
VOC	18.47%	0.09	0.40
Total HAPs	0.23%	0.00	0.01
Benzene	0.00%	0.00	0.00
Toluene	0.01%	0.00	0.00
Ethylbenzene	0.00%	0.00	0.00
Xylenes	0.01%	0.00	0.00
n-Hexane	0.22%	0.00	0.00
Methane	80.85%	0.40	1.76

MarkWest Liberty Midstream and Resources, L.L.C. Mobley Gas Plant Crankcase Emissions

Crankcase Blowby Percentage¹

3%

Pollutant		e Emissions	Plouby Paraentage	Blowby I	Emissions
	lb/hr	tpy	Blowby Percentage	lb/hr	tpy
NO _X	14.79	64.87		0.44	1.95
CO	8.58	37.53		0.26	1.13
VOC	7.86	34.49		0.24	1.03
SO ₂	0.09	0.38		0.00	0.01
PM	2.20	9.65		0.07	0.29
Benzene	0.11	0.69	3%	0.00	0.02
Toluene	0.07	0.32	570	0.00	0.01
Ethylbenzene	0.07	0.07		0.00	0.00
Xylenes	0.07	0.11		0.00	0.00
n-Hexane	0.00	0.00		0.00	0.00
Formaldehyde	0.74	3.33		0.02	0.10
Total HAPs	2.81	12.28		0.08	0.37

ATTACHMENT P: PUBLIC NOTICE

MarkWest Liberty Midstream & Resources L.L.C. has published a public notice in *The Wetzel Chronicle* newspaper, headquartered in Wetzel County, WV. This paper serves the geographical area surrounding the proposed facility.

The affidavit issued by the paper showing the date of publication and the actual text is attached following the proposed text:

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that MarkWest Liberty Midstream & Resources L.L.C. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, to modify a New Source Review (45 CSR 13) construction permit for a modification to a natural gas processing plant (Mobley Gas Plant) located at 14,624 North Fork Road, Smithfield, West Virginia 26437 (Permit R13-2878D). The site is located at Latitude N 39° 33′ 08″ and Longitude W 80° 32′ 26″. The latitude and longitude coordinates in decimal degrees are 39.5522° N and 80.54056° W.

The modification will result in changes to the potential to emit of the following Regulated Air Pollutants as follows:

Nitrogen Oxides (NOx)	6.23 tons/yr
Carbon Monoxide (CO)	1.24 tons/yr
Volatile Organic Compounds (VOC)	28.28 tons/yr
Particulate Matter (PM)	-0.04 tons/yr
Sulfur Dioxide (SO ₂)	0.07 tons/yr
Total HAPs	-0.37 tons/yr

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated the 27th of February 2017

By: MarkWest Liberty Midstream & Resources L.L.C.

Leanne Meyer VP of EH&S 1515 Arapahoe Street Tower 1, Suite 1600 Denver, CO 80202-2137

APPLICATION FEE

Per 45CSR13 and 45CSR22, Title 45, Series 22, Section 3.4.a, a fee of \$1,000 must be submitted for a Modification Permit. In addition, per Section 3.4b, a Category Fee of \$1,000 must be paid for NSPS requirements.

MarkWest Liberty Midstream & Resources L.L.C. hereby submits a check for the total \$2,000.00 payable to: WVDEP/DAQ

APPENDIX A: SUPPORT DOCUMENTS

Generator Specification Sheets

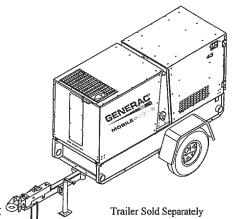
Heater Specification Sheets

Mobile Generator – MMG45FHK Specifications

ENGINE

- Kubota® V3600-T-E3BG turbocharged, diesel engine
 - o Prime 53 hp @ 1800 rpm
 - o Standby 58 hp @ 1800 rpm
 - o 4 cylinder
 - o 3.6 L displacement
 - o Interim Tier IV approved
- · Steel, single wall fuel tank
 - o 106 gal. capacity
 - o 31 hr. run time full load
 - o Fuel tank built into skid of generator set
- Fuel consumption at prime:
 - o 100% 3.0 gph (11.4 Lph)
 - o 75% 2.3 gph (8.7 Lph)
 - o 50% 1.5 gph (5.7 Lph)
- Cooling system capable of operating at 120°F ambient
- Low coolant shutdown
- Radiator and oil drains plumbed to exterior
- · Rubber vibration dampers isolate engine/generator from frame
- Disposable air filter paper element
- Air filter restriction indicator mounted on control panel
- 60 Hz engine/generator
- Electronic isochronous governing

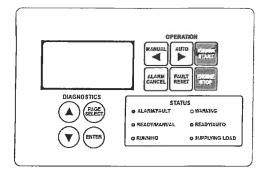
GENERATOR


- Marathon Electric[®]
 - o Brushless
 - o 4 pole
 - Class H insulation
- Voltage regulation +/- 1% with Marathon SE350 Voltage Regulator

SYSTEM OUTPUT

- 3 position selector switch
 - o Single phase 120 / 240V Zig Zag
 - o Three phase 120 / 208V Low Wye
 - o Three phase 277 / 480V High Wye
- 33 kW / 33 kVA standby, single phase
- 30 kW / 30 kVA prime, single phase
- 35 kW / 44 kVA standby, three phase
- 33 kW / 41 kVA prime, three phase

SYSTEM CONTROLS


- Microprocessor-based controller
 - o Backlit, 128x64 pixel resolution display
 - -40°F to 185°F operating temperature range
 - Thermostatically controlled LCD heater

- o Six LED indicators w/ lamp test
 - Alarm / Fault (Red)
 - Ready / Manual (Red)
 - Running (Green)
 - Warning (Yellow)
 - Ready / Auto (Green)
 - Supplying Load (Green)
- Push buttons for easy operation
 - o Manual or Auto Start
 - Engine Start or Stop
 - o Alarm Cancel & Fault Reset
 - Scrolling Arrows for Diagnostic Information
 - System kW output display
 - Line output & frequency display
 - Engine diagnostic display
 - Oil pressure
 - Engine temperature
 - Fuel level
 - Battery
 - System hours
 - Running hours
 - kW hours
 - Time to service
 - o Alarm list warnings / shutdowns are date & time stamped
 - Fuel level: warning 15%; shutdown 5%
 - Overspeed protection: shutdown 115%
 - Oil pressure: warning 25 psi; shutdown 20 psi
 - ◆ Coolant temperature: warning 220°F; shutdown 230°F
 - Battery voltage: over 15VDC; under 11VDC
 - Generator over voltage: warning 110%; shutdown 111%
 - Generator under voltage: warning 87%; shutdown 86%
 - ◆ Generator over frequency: warning 105%; shutdown 110%
 - Generator under frequency: warning 95%; shutdown 90%
 - Over current shutdown

ELECTRICAL CONTROLS

- Remote start / stop contacts located next to lug box
- Lockable control box door with diagnostics window
- Lockable lug box with safety switch
 - Trips main breaker when lug door is opened
 - o Disables voltage regulator
- Cable entry guides to the lug box
 - Restricts access of foreign objects
- Output ground connection lug inside lug box
- 200A main breaker with shunt trip
- Convenience receptacles with individual breakers (restricted use in high wye mode)
 - o (2) 120V 20 Amp GFCI duplex outlets (Nema 5-20R type)
 - o (2) 125 / 250V 50 Amp, 3 pole, 4 wire twistlock (Non-Nema 6369)
- Panel mounted rheostat for voltage adjustment +/- 10%

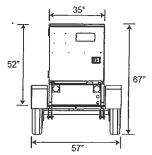
720 CCA wet cell battery

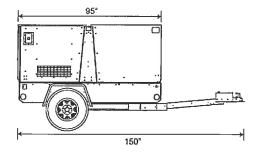
ENCLOSURE

- Generac Mobile Power decals
- "Flip-Hood" Patented design aluminum, sound attenuated enclosure
 - o Easy access for daily maintenance
 - Centralized location for all electrical connections/wiring
 - o UV & fade resistant, high temperature cured, white polyester powder paint
 - Insulated and baffled
 - o 68 dB(A) at 23 feet prime power
- Fully lockable enclosure including doors and fuel fill
- Stainless steel hinges on doors
- Emergency stop switch located on outside of enclosure
- Central lifting point
- Multi-lingual operating/safety decals
- Document holder with operating manual including AC/DC wiring diagrams

TRAILER

- "Flip-Tongue" design
- DOT approved tail, side, brake, and directional lights
 - o Recessed rear lights
- Transportation tie downs
- Safety chains with spring loaded safety hooks
- 2" ball hitch
- 5000 lb. axle with surge brakes
- 3000 lb. tongue jack with footplate
- P205/75R15 tubeless tires 8 ply


WEIGHTS & DIMENSIONS


Skid mounted

- Dry weight: 2329 lbs (1056 kg)
- Operating weight: 3082 lbs (1398 kg)
- 95 x 35 x 52 in (2.41 x 0.89 x 1.32 m)

Trailer mounted

- Dry weight: 2853 lbs (1294 kg)
- Operating weight: 3606 lbs (1636 kg)
- 150 x 57 x 67 in (3.81 x 1.45 x 1.70 m)

WARRANTY

Engine and generator covered under OEM warranty – consult factory for details.

CERTIFICATIONS

CSA certified

MMG45FHK Options

ENGINE OPTIONS

- In-line engine block heater (Kim Hotstart)
- Fuel transfer pump

ELECTRICAL CONTROLS OPTIONS

- ♦ 720 CCA gei cell battery
- Battery disconnect
- ♦ Battery charger 2A trickle

GENERATOR OPTIONS

- PMG Generator critical grade power quality
- Super Start Generator motor starting applications

VOLTAGE OUTPUT OPTIONS

- ♦ 4 position phase switch
 - Single phase 120 / 240V High Wye
 - Three phase 120 / 208V Low Wye
 - Three phase 277 / 480V Zig Zag
 - Three phase 120 / 240V Delta
- Dedicated voltage configurations
- ♦ Buck Transformer kit Provides 120V at GFCI outlets when in 277/480V
- Cam locks

SYSTEM CONTROLS OPTIONS

- Analog gauges
- Auxiliary strobe/audible indication for soft & hard alarm conditions

COOLANT OPTIONS

♦ 60/40 Coolant - cold weather applications

ENCLOSURE OPTIONS

- Fire extinguisher
- Interior cabinet light
- Control panel light

FUEL TANK OPTIONS

- 36 hr. single wall fuel tank (requires tandem axle trailer)
- 29 hr. double wall fuel tank
- 120% Containment

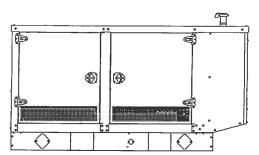
TRAILER OPTIONS

- Single axle trailer w/ electric brakes
- Tandem axle trailer w/ surge brakes
- ♦ Tandem axle trailer w/ electric brakes
- 6 pin or 7 spade electrical connectors
- Spare tire/wheel kit

HITCH OPTIONS

- 3" lunette ring
- 25/16" ball
- Adjustable height options:
 - 2" bali
 - 2 5/16" ball

KOHLER POWER SYSTEMS


190-480 V

Gas

Ratings Range

		60 Hz	50 Hz
Standby:	kW	33-40	24-34
	kVA	33-50	26-40

Standard Features

- Kohler Co. provides one-source responsibility for the generating system and accessories.
- The generator set and its components are prototype-tested, factory-built, and production-tested.
- UL 2200 listing is available. (60 Hz only)
- The generator set accepts rated load in one step.
- The 60 Hz generator set engine is certified by the Environmental Protection Agency (EPA) to conform to the New Source Performance Standard (NSPS) for stationary spark-ignited emissions.
- A one-year limited warranty covers all systems and components. Two- and five-year extended warranties are also available.
- Alternator features:
 - The unique Fast-Response[™] Il excitation system delivers excellent voltage response and short-circuit capability using a permanent magnet (PM)-excited alternator.
 - The brushless, rotating-field alternator has broadrange reconnectability.
- Other features:
 - Controllers are available for all applications. See controller features inside.
 - The electronic, isochronous governor incorporates an integrated drive-by-wire throttle body actuator delivering precise frequency regulation.
- Quick-ship (QS) models with selected features and a five-year basic warranty are available. See your Kohler distributor for details.

Generator Set Ratings

				130°C Standby		LP (130°C Standby	Rise Rating
Alternator	Voltage	<u>Ph</u>	_ Hz	kW/kVA	Amps	kW/kVA	Amps
	120/208	3	60	39/49	135	39/49	135
	127/220	3	60	39/49	128	40/50	131
	120/240	3	60	39/49	117	39/49	117
	120/240	1	60	33/33	138	33/33	138
	139/240	3	60	39/49	117	40/50	120
	220/380	3	60	35/44	66	35/44	66
	277/480	3	60	39/49	58	40/50	60
4P5	110/190	3	50	31/39	119	32/40	122
	115/200	3	50	28/35	101	28/35	101
	120/208	3	50	24/30	83	24/30	83
	110/220	1	50	26/26	118	26/26	118
	110/220	3	50	31/39	102	32/40	105
	220/380	3	50	31/39	59	32/40	61
	230/400	3	50	28/35	51	28/35	51
	240/416	3	50	24/30	42	24/30	42
4Q5 -	120/240	1	60	38/38	158	38/38	158
4Q0 ·	110/220	1	50	30/30	136	32/32	145
107	120/240	1	60	40/40	167	40/40	167
4Q7 -	110/220	1	50	32/32	145	34/34	155

RATINGS: All three-phase units are rated at 0.8 power factor. All single-phase units are rated at 1.0 power factor. Standby Ratings: Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. There is no overload capability for this rating. Ratings are in accordance with ISO-3046/1, BS 5514, AS 2789, and DIN 8271. For limited running time and base load ratings, consult the factory. Obtain the technical information bulletin (TIB-101) on ratings guidelines for the complete ratings definitions. The generator set manufacturer reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. GENERAL GUIDELINES FOR DERATING: Altitude: Derate 1.3% per 100 m (328 ft.) elevation above 200 m (656 ft.). Temperature: Derate 3.0% per 10°C (18°F) temperature above 25°C (77°F). For dual fuel engines, use the natural gas ratings for both the primary and secondary fuels.

Alternator Specifications

Specifications	Alternator
Manufacturer	Kohler
Type	4-Pole, Rotating-Field
Exciter type	Brushless, Permanent- Magnet
Leads: quantity, type	
4P5	12, Reconnectable
4Q5, 4Q7	4, 110-120/220-240
Voltage regulator	Solid State, Volts/Hz
Insulation:	NEMA MG1
Material	Class H
Temperature rise	130°C, Standby
Bearing: quantity, type	1, Sealed
Coupling	Flexible Disc
Amortisseur windings	Full
Voltage regulation, no-load to full-load	
Decision-Maker 3000 controller	3-Phase Sensing, ±0.5%
Decision-Maker 550 controller (with	
0.5% drift due to temp variation)	3-Phase Sensing, ±0.25%
Unbalanced load capability	100% of Rated Standby Current
One-step load acceptance	100% of Rating
Peak motor starting kVA:	(35% dip for voltages below)
480 V, 380 V 4P5 (12 lead)	140 (60 Hz), 98 (50 Hz)
240 V, 220 V 4Q5 (4 lead)	95 (60 Hz), 78 (50 Hz)
240 V, 220V 4Q7 (4 lead)	104 (60 Hz), 91 (50 Hz)

- NEMA MG1, IEEE, and ANSI standards compliance for temperature rise and motor starting.
- Sustained short-circuit current of up to 300% of the rated current for up to 10 seconds.
- Sustained short-circuit current enabling downstream circuit breakers to trip without collapsing the alternator field.
- Self-ventilated and dripproof construction.
- Vacuum-impregnated windings with fungus-resistant epoxy varnish for dependability and long life.
- Superior voltage waveform from a two-thirds pitch stator and skewed rotor.
- Fast-Response[™] II brushless alternator with brushless exciter for excellent load response.

Application Data

Engine

Filding				
Engine Specifications	60 Hz	50 Hz		
Manufacturer	Genera	Motors		
Engine: model, type	Industrial I	Powertrain		
		L, 4-Cycle		
	Natural A			
Cylinder arrangement	V-	-6		
Displacement, L (cu. in.)	4.3 (262)		
Bore and stroke, mm (in.)	101.6 x 88.4	(4.00 x 3.48)		
Compression ratio	9.0	5:1		
Piston speed, m/min. (ft./min.)	318 (1044)	265 (870)		
Main bearings: quantity, type	4, Ba	bbitt		
Rated rpm	1800	1500		
Max. power at rated rpm, kW (HP)	56 (75)	44.8 (60)		
Engine power at standby rating, kW (HP)				
Natural Gas	41.9 (56)	40.3 (54)		
LP Gas	45.3 (61)	42.5 (57)		
Cylinder head material	Cast	iron		
Piston type and material	High Silicon Aluminum			
Crankshaft material	Nodular iron			
Valve (exhaust) material	Forged Steel			
Governor type	Electronic			
Frequency regulation, no-load to full-load	Isochr	onous		
Frequency regulation, steady state	±0.	5%		
Frequency	Fix	ed		
Air cleaner type, all models	Di	у		

Exhaust

Exhaust System	60 Hz	50 Hz
Exhaust manifold type	D	ry
Exhaust flow at rated kW, m3/min. (cfm)	8.8 (310)	7.4 (260)
Exhaust temperature at rated kW, dry exhaust, °C (°F)	649 (1200)
Maximum allowable back pressure, kPa (in. Hg)	10.2	(3.0)
Exhaust outlet size at engine hookup, mm (in.)	76 (3.	0) OD

Engine Electrical

Engine Electrical System	60 Hz	50 Hz
Ignition system	Electronic,	Distributor
Battery charging alternator:		
Ground (negative/positive)	Nega	ative
Volts (DC)	1:	2
Ampere rating	70) .
Starter motor rated voltage (DC)	1:	2
Battery, recommended cold cranking amps (CCA):		
Qty., rating for -18°C (0°F)	One,	630
Battery voltage (DC)	12	2

Fuel

Fuel System	60 Hz	50 Hz
Fuel type	LP Gas, Nat Dual	
Fuel supply line inlet	1 N	PTF
Natural gas fuel supply pressure, kPa		
(in. H ₂ O)	1.74-2.7	'4 (7-11)
LPG vapor withdrawal fuel supply pressure, kPa (in. H ₂ O)	1.24-2.7	'4 (5-11)
Dual fuel engine, LPG vapor withdrawal fuel supply pressure, kPa (in. H ₂ O)	1.24	(5)

Fuel Composition Limits *	Nat. Gas	LP Gas		
Methane, % by volume	90 min.			
Ethane, % by volume	4.0 max.	_		
Propane, % by volume	1.0 max.	85 min.		
Propene, % by volume	0.1 max.	5.0 max.		
C ₄ and higher, % by volume	0.3 max.	2.5 max.		
Sulfur, ppm mass	25 max.			
Lower heating value,				
MJ/m ³ (Btu/ft ³), min.	33.2 (890)	84.2 (2260)		

* Fuels with other compositions may be acceptable. If your fuel is outside the listed specifications, contact your local distributor for further analysis and advice.

Application Data

Lubrication

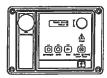
Lubricating System	60 Hz	50Hz	
Туре	Full Pressure		
Oil pan capacity, L (qt.)	4.3 (4.5)		
Oil pan capacity with filter, L (qt.)	5.7	(6.0)	
Oil filter: quantity, type	1, Car	tridge	

Cooling

60 Hz	50 Hz	
45 (113)		
6.8 (1.8)		
19.7	(5.2)	
106.0 (28)	87.1 (23)	
39.2 (2230)	34.6 (1970)	
Centrifugal		
533 (21)		
1.5 (2.0)	1.0 (1.2)	
0.125	(0.5)	
	45 (6.8 19.7 106.0 (28) 39.2 (2230) Centr	

Operation Requirements

Air Requirements	60 Hz	50 Hz
Radiator-cooled cooling air,		
m ³ /min. (scfm)†	142 (5000)	113 (4000)
Combustion air, m3/min. (cfm)	2.61 (92)	2.20 (78)
Heat rejected to ambient air:		
Engine, kW (Btu/min.)	16.0 (910)	15.4 (860)
Alternator, kW (Btu/min.)	6.3 (360)	6.2 (350)
† Air density = 1.20 kg/m 3 (0.075 lbm/ft 3)		

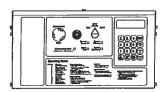

Fuel Consumption‡	S	Standby Rating		
Natural Gas, m ³ /hr. (cfh) at %	load 60	Hz 5	50 Hz	
100%	16.5	(584) 13.	.5 (477)	
75%	13.8	(486) 10.	.4 (367)	
50%	10.2	(360) 8.	.0 (281)	
25%	7.7	(272) 5.	.8 (206)	
LP Gas, m ³ /hr. (cfh) at % load	60	Hz 5	50 Hz	
100%	6.9	(242) 5.	.4 (190)	
75%	5.4	(191) 4.	2 (148)	
50%	4.0	(141) 3.	1 (111)	
25%	2.9	(101) 2.	3 (81)	
‡ Nominal Fuel Rating:	Natural gas, 37	MJ/m ³ (1000	Btu/ft ³)	

LP Vapor, 93 MJ/m3 (2500 Btu/ft3)

LP vapor conversion factors:

8.58 ft.³ = 1 lb. 0.535 m³ = 1 kg. 36.39 ft.³ = 1 gal.

Controllers

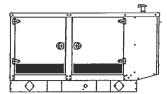


Decision-Maker® 3000 Controller

Provides advanced control, system monitoring, and system diagnostics for optimum performance and compatibility.

- Digital display and menu control provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication through a PC via network or serial configuration
- Integrated hybrid voltage regulator with ±0.5% regulation
- Built-in alternator thermal overload protection

Refer to G6-100 for additional controller features and accessories.


Decision-Maker® 550 Controller

Provides advanced control, system monitoring, and system diagnostics with remote monitoring capabilities.

- Digital display and keypad provide easy local data access
- Measurements are selectable in metric or English units
- Remote communication through a PC via network or modem configuration
- Controller supports Modbus® protocol
- Integrated voltage regulator with ±0.25% regulation
- Built-in alternator thermal overload protection

Refer to G6-46 for additional controller features and accessories.

Sound Enclosure

- Sound level at 7 m (23 ft.) with full load: 69 dB(A)
- Sound attenuating enclosure uses acoustic insulation that meets
 UL 94 HF1 flammability classification and repels moisture absorption.
- Vertical air inlet and outlet discharge with 90 degree bends to redirect air and reduce noise.
- Internal-mounted critical silencer and flexible exhaust connector.
- Skid-mounted, steel (standard) or aluminum (optional) construction with hinged doors.
- Fade-, scratch-, and corrosion-resistant Kohler[®] Cashmere Power Armor[™] textured e-coat paint.
- Lockable, flush-mounted door latches.
- Certified to wothstand 241 kph (150 mph) wind load rating (aluminum enclosures only).

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KohlerPower.com

Kohler Power Systems Asia Pacific Headquarters 7 Jurong Pier Road Singapore 619159 Phone (65) 6264-6422, Fax (65) 6264-6455

Additional Standard Features

- Alternator Protection
- Battery Rack and Cables
- Electronic, Isochronous Governor
- Gas Fuel System (includes fuel mixer, electronic secondary gas regulator, gas solenoid valve, and flexible fuel line between the engine and the skid-mounted fuel system components)
- Integral Vibration Isolation
- Local Emergency Stop Switch
- Oil Drain Extension
- Operation and Installation Literature
- Steel Sound Enclosure

Αv	ailable Options
00	Approvals and Listings CSA Approval UL 2200 Listing (60 Hz only)
	Enclosure Aluminum Sound Enclosure
00 00	Fuel System Dual Fuel NG/LPG (automatic changeover) Flexible Fuel Line (required when the generator set skid is spring mounted) Gas Filter Additional Gas Solenoid Valve
	Controller Common Fault Relay Communication Products and PC Software (550 controller only) Customer Connection (550 controller only) Dry Contact (isolated alarm) (550 controller only) Input/Output Module (3000 controller only) Remote Annunciator Panel

Cooling	System
---------	--------

Run Relay

Block Heater, 1500 W, 110-120 V Block Heater, 1500 W, 190-240 V

Remote Emergency Stop

[recommended for ambient temperatures below 10°C (50°F)]

Remote Audiovisual Alarm Panel (550 controller only)

Electrical System

Alternator Strip Heater

Battery

ā

Battery Charger, Equalize/Float Type

Battery Heater

Line Circuit Breaker (NEMA1 enclosure)

Line Circuit Breaker with Shunt Trip (NEMA1 enclosure)

Ш	Air	Cie	eaner	Н	lestric	tor In	ndica	tor	
_									

- ☐ Engine Fluids (oil and coolant) Added
- Rated Power Factor Testing
- Rodent Guards

Literature

- General Maintenance
- Overhaul
- Production

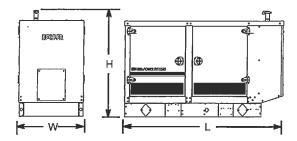
Warranty

- 2-Year Basic
- 5-Year Basic
- 5-Year Comprehensive

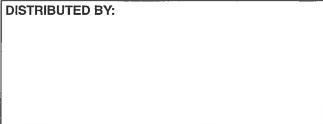
Other Ontions

	Other Options
Ē.	
ñ	;
$\ddot{\Box}$	
7	
2	
7	
Н	

Dimensions and Weights


Overall Size, L x W x H, mm (in.):

2585 x 1078 x 1509 (102 x 42.4 x 59.4)


Weight, wet, kg (lb.):

With steel sound enclosure With aluminum sound enclosure 982 (2165) 890 (1962)

Weight includes generator set with engine fluids and largest alternator option, sound enclosure, and silencer.

NOTE: This drawing is provided for reference only and should not be used for planning installation. Contact your local distributor for more detailed information.

© 2009, 2010, 2012 by Kohler Co. All rights reserved.

THOMAS RUSSELL CO. Tulsa, Oklahoma

JOB NO: TRJ-362D

Markwest Energy

DATE: BY: 4/30/2014 TWO

CLIENT: SUBJECT:

Deethanizer for SC20

HEATER	

Service: HMO Hea	ter			Tag No:	H-7	'82		
Design Duty, MBTU/Hr	41,743			Type: Helical Coil				
No. of Coils per Unit		No. Units:	On	e Heatec Model: HCI-25010-40(Q)-G				
Fluid		Therm	ninol 55	Burners				
		Inlet	Outlet		Gas	Oil		
Liquids	Lbs/Hr	553,147	553,147	LHV (BTU/scf)	894			
Density	Lbs/CuFt	50.9	47.60	Mol. Wt.	16.5			
Molecular Weight		320	320	Gravity	0.57			
Specific Heat	BTU/Lb °F	0.527	0.591	Pressure Avail. (psig)	85			
Thermal Cond.	BTU/Hr-Ft-°F	0.0686	0.0635	Pressure Req'd (psig)				
Viscosity	сР	2.6400	0.919	Steam for Atomizing	NA			
Vapor	Lbs/Hr	0	0	Fuel Gas Reg'd (MSCFD)	1,404.18	N/A		
Density	Lbs/CuFt			Mfgr: Maxon Low NOx				
Molecular Weight				Type: Forced Draft, 100 HP Blower				
Specific Heat	BTU/Lb °F			Number Reg'd One (es		est)		
Thermal Cond.	BTU/HrFt °F			Pilots Req'd (Note 4)	Yes, electric	Yes, electrical ignition		
Viscosity	сР					mvd		
Operating Temp.	°F	220	355	Structural Design				
Operating Pressure	PSIA	135		Wind Load, MPH, (3) 120 MPH				
Velocity	Ft/Sec		9 Calc.	Seismic Zone, (3)	S _S =100%, S ₁ =40			
Pressure Drop	PSI	30 Allow.	17 Calc.	Ambient, °F		105		
Fouling Resistance	SqFt*F/BTU	0.0	1020	Elevation, Ft	evation, Ft 1300			
Design Press. / Temp.		150 PSIG	600 °F	Stack Design				
Min. Design Mtl. Temp.				Self-supporting	Ye	S		
Corrosion Allowance		0.0	625	Minimum Height 8 ft above top of heat				
Insulation Thickness		3-5" high tem	p ceramic fiber	Minimum Wall Thickness: 0.125				
Efficiency-Based on LHV	(%)	82.2%	(Assume 3% Loss)	Lining Type No)		
Excess Air		1	15	Lining Thickness: No				
Firebox Unit Heat Release		16,511	BTU/Hr- Ft^3	Damper:	No)		
Number of Passes		Process - Four, Fire	eside - Two (Note 8)					
Coil Design		Radiant	Convection-Bare	Convection-Finned				
Fluid Temperature	In/Out	220 / 355						
Number Tubes		Four (Note 8) 🛕						
Tube O.D.	ln	4" Sch. 40	10" 300# ANSI RF Flg	Inlet and Outlet 🛦				
Tube Length	Eff. Ft							
Bare Surface	Sq Ft	3,648	,	· ·				
Finned Surface	Sq Ft	N/A						
Avg. Heat Flux	BTU/Hr-Sq Ft	13,841						
Tube Materials		SA-106 Gr. B						
Convection Fins (inch):	Height:	Thickness:	No. / inch:	Material:				
Overall Dimension:	50	4' L x 11.9' W x 12.7' H	(Less Stack)	Dry Weight:	78,152 lbs.			
Code Requirements:		ME VIII Div I	Stamp: Yes	Nat'l Board:	Yes			

Notes:

- 1) Add 10% to duty and flow rates for design.
- 2) See attached Scope of Supply.
- 3) Wind design per ASCE 7-10, Cat. III, Exposure C. Seismic design per ASCE 7-10, I=1.25, Site D.
- 4) Electrical power to be 480 V / 3 ph / 60 hz. Control enclosures to be NEMA 4.
- 5) Add Spare ignitor
- 6) Flanges to be 300# RFWN
- 7) High degree of turndown is requested 10: 1 burner design is requested.

8) Flow orifice meter and transmitter required for each coil, routed to Heatec panel. Signal will be taken to UOPR control panel.

REVISION	Α		В		0		A 1	
ENGINEER/DATE	TWO	4/30/14	JSR	7/14/14	JRG	7/28/14	TKF	2/12/15
ISSUED FOR	RFQ		Revision		Purchase		Revised	

1724/2015, 12.42 PW, POMI-PRU-DIR